Navigation Links
Microreactors: Small scale chemistry could lead to big improvements for biodegradable polymers
Date:3/31/2011

Using a small block of aluminum with a tiny groove carved in it, a team of researchers from the National Institute of Standards and Technology (NIST) and the Polytechnic Institute of New York University is developing an improved "green chemistry" method for making biodegradable polymers. Their recently published work* is a prime example of the value of microfluidics, a technology more commonly associated with inkjet printers and medical diagnostics, to process modeling and development for industrial chemistry.

"We basically developed a microreactor that lets us monitor continuous polymerization using enzymes," explains NIST materials scientist Kathryn Beers. "These enzymes are an alternate green technology for making these types of polymerswe looked at a polyesterbut the processes aren't really industrially competitive yet," she says. Data from the microreactor, a sort of zig-zag channel about a millimeter deep crammed with hundreds of tiny beads, shows how the process could be made much more efficient. The team believes it to be the first example of the observation of polymerization with a solid-supported enzyme in a microreactor.

The group studied the synthesis of PCL,** a biodegradable polyester used in applications ranging from medical devices to disposable tableware. PCL, Beers explains, most commonly is synthesized using an organic tin-based catalyst to stitch the base chemical rings together into the long polymer chains. The catalyst is highly toxic, however, and has to be disposed of.

Modern biochemistry has found a more environmentally friendly substitute in an enzyme produced by the yeast strain Candida antartica, Beers says, but standard batch processesin which the raw material is dumped into a vat, along with tiny beads that carry the enzyme, and stirredis too inefficient to be commercially competitive. It also has problems with enzyme residue contaminating and degrading the product.

By contrast, Beers explains, the microreactor is a continuous flow process. The feedstock chemical flows through the narrow channel, around the enzyme-coated beads, and, polymerized, out the other end. The arrangement allows precise control of temperature and reaction time, so that detailed data on the chemical kinetics of the process can be recorded to develop an accurate model to scale the process.

"The small-scale flow reactor allows us to monitor polymerization and look at the performance recyclability and recovery of these enzymes," Beers says. "With this process engineering approach, we've shown that continuous flow really benefits these reactors. Not only does it dramatically accelerate the rate of reaction, but it improves your ability to recover the enzyme and reduce contamination of the product." A forthcoming follow-up paper, she says, will present a full kinetic model of the reaction that could serve as the basis for designing an industrial scale process.

While this study focused on a specific type of enzyme-assisted polymer reactions, the authors observe, "it is evident that similar microreactor-based platforms can readily be extended to other systems; for example, high-throughput screening of new enzymes and to processes where continuous flow mode is preferred."


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Americas smallest dinosaur uncovered
2. Exciting new companies at NJITs small biz incubator get 100K in lrants
3. Exciting new companies at NJITs small biz incubator get 100K in grants
4. When particles are so small that they seep right through skin
5. Studies of small water fleas help ecologists understand population dynamics
6. Networks of small habitat patches can preserve urban biodiversity
7. Nanoparticles in the home: More and smaller than previously detected
8. Small satellite takes on large thunderstorms
9. New study indicates smallpox vaccination effective for decades
10. Small changes can lead to big rewards, says ASN president
11. CSHL scientists find a new class of small RNAs and define its function
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Microreactors: Small scale chemistry could lead to big improvements for biodegradable polymers
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by Solution ... Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to 2022", ... 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at a ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... Malden, Mass. (PRWEB) , ... May 18, 2017 ... ... completed the procedure on April 28, 2017 at the Prince Of Wales Private ... degenerative cervical disc at level C6-C7. The patient failed conservative treatments prior to ...
(Date:5/18/2017)... ... May 16, 2017 , ... Clinical Supplies Management (“CSM”), a Great ... company continues to grow. CSM has doubled in size over the past six ... aggressive growth strategy. , Roger Gasper joins CSM as Chief Financial Officer. Roger ...
(Date:5/18/2017)... ... May 17, 2017 , ... ... enhances its scientific power by providing investigators access to a high-profile scientific ... join the scientific advisory board. “We are committed to offering superior services ...
(Date:5/18/2017)... SANTA BARBARA, CALIFORNIA (PRWEB) , ... May 17, ... ... risk management, technological innovation and business process optimization firm for the life sciences ... the Chairman of the UDIs and Traceability for Medical Devices conference in Brussels, ...
Breaking Biology Technology: