Navigation Links
Microchoreography: Researchers use synthetic molecule to guide cellular 'dance'
Date:12/5/2012

Johns Hopkins researchers have used a small synthetic molecule to stimulate cells to move and change shape, bypassing the cells' usual way of sensing and responding to their environment. The experiment pioneers a new tool for studying cell movement, a phenomenon involved in everything from development to immunity to the spread of cancer.

"We were able to use synthetic molecules small enough to slip inside the cell and activate a chemical reaction controlling cell movement, bypassing most of the steps that usually lead up to this reaction," says Andre Levchenko, Ph.D., a professor at the Johns Hopkins University School of Medicine's Institute for Cell Engineering, whose lab collaborated with that of Takanari Inoue, also from the school of medicine, on the study.

"As a result, we came up with a new model to describe one of the more fundamental and important cellular processes and a better understanding of cell movements critical for cancer progression and immune response." A report on the study was published Nov. 26 on the website of the Proceedings of the National Academy of Sciences.

Like bacteria wiggling through a drop of pond water, many types of human cells move too, including fibroblasts, which patrol the skin and make repairs; immune cells, which rush to the site of infections; and nerve cells, which must travel great distances during development, Levchenko says. Similarly, in order to metastasize or spread, a tumor's cells must break off and migrate to a new part of the body.

Because of its role in cancer and immunity, these cellular dances are a hot area of research at present, Levchenko says. However, it is difficult to study the natural process for stimulating movement, in which signaling proteins bind to receptor molecules on the surface of the cell, setting off a complex chain reaction that ultimately propels the cell in a certain direction. In addition to the problem of complexity of the molecular interaction network, another difficulty is that cells decide which way to move by comparing the signal concentration on one side of the cell to the concentration on the other. "Stimulating a cell differently on one side than on the other side is not a trivial thing to do, because cells are incredibly small about one-tenth the width of a human hair," Levchenko explains.

To deal with the first problem, Benjamin Lin, a member of Levchenko's team who led the study, joined forces with Inoue's research group to take advantage of a novel method relying on a small molecule able to get between the fat molecules of the cell membrane and into the cell. Once inside, it would bind to two slightly modified proteins in the network that stimulates movement; the new complex of three molecules would in turn trigger the critical protein Rac, which falls somewhere in the middle of the choreographed chain reaction that leads to movement. By analyzing which enzymes in the chain reaction were ultimately activated by the synthetic molecule and which weren't, the researchers could tell whether they were downstream or upstream of Rac in the chain.

To create a fine enough biochemical gradient of the synthetic molecule to guide a cell in a specific direction, the researchers built a silicone-based chip with tiny liquid-dispensing channels running along the surface. When they loaded the channels with a solution containing the synthetic molecule, and placed human cells on the surface, they could stimulate one side of a cell more than the other, and induce it to move. "Neither synthetic molecules nor microfluidic devices had been used before in this particular way, and the results exceeded all our expectations," says Levchenko. "The cells responded very dramatically, moving in the direction we specified, and changing their shapes."

In addition to providing researchers with powerful new tools for studying cell movement, the experiment is a step forward for the budding field of synthetic biology. "If a researcher decides to grow new tissue for transplantation, it could be useful to have a cue that enforces cell migration and assembly," Levchenko says.


'/>"/>
Contact: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medicine
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Microchoreography: Researchers use synthetic molecule to guide cellular 'dance'
(Date:2/16/2017)... 2017  Genos, a community for personal genetic ... received Laboratory Accreditation from the College of American ... laboratories that meet stringent requirements around quality, accuracy ... "Genos is committed to maintaining the ... honored to be receiving CAP accreditation," said ...
(Date:2/9/2017)... 9, 2017 The biomass boiler market report ... biomass boiler market globally in terms of revenue (US$ ... The market for biomass boilers has been segmented on ... and country/region. The market based on feedstock type, has ... biogas & energy crops, urban residues, and others. On ...
(Date:2/8/2017)... , Feb. 7, 2017 Report Highlights ... billion by 2021 from $8.3 billion in 2016 at ... 2016 to 2021. Report Includes - An overview ... global market trends, with data from 2015 and 2016, ... 2021. - Segmentation of the market on the basis ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... ... February 21, 2017 , ... Creation ... manufacturing solutions for original equipment manufacturers (OEMs) , today announced it has received ... third consecutive year winning in its category of electronics manufacturing services (EMS) providers ...
(Date:2/21/2017)... , Feb. 21, 2017  Lexus, a returning partner of the ... the official and exclusive automobile partner of the men,s and women,s ... The 2017 Amgen Tour of California ... feature some of the best professional cycling teams in the world ... 14-20. The four-day Amgen Breakaway from Heart Disease TM ...
(Date:2/21/2017)... 2017 Scientists From Two Companies ... Plastic Industry  ... STEER, creator of advanced materials platform ... fields of plastics, pharmaceuticals, food and nutraceuticals, biomaterials and biorefining, ... science & technology company, on creating co-rotating twin screw ...
(Date:2/21/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Bioplastics & Biopolymers ... over the next decade to reach approximately $8.9 billion by 2025. ... forecasts for all the given segments on global as well as ...
Breaking Biology Technology: