Navigation Links
Microbiologists reveal unexpected properties of methane-producing microbe
Date:11/18/2013

AMHERST, Mass. For 40 years, scientists thought they understood how certain bacteria work together to anaerobically digest biomass to produce methane gas, important in bioenergy and the major source of greenhouse gas. But now microbiologists in Derek Lovley's lab at the University of Massachusetts Amherst show for the first time that one of the most abundant methane-producing microorganisms on earth makes direct electrical connections with another species to produce the gas in a completely unexpected way.

Lovley and colleagues, including former postdoctoral researcher and first author Amelia-Elena Rotaru, describe the newly discovered properties of the methane-producing bacterium Methanosaeta in the current issue of the British Royal Society of Chemistry journal, Energy and Environmental Science.

"We discovered that Methanosaeta have the ability to reduce carbon dioxide (CO2) to methane," Lovley explains. "They do this by a remarkable mechanism in which they make electrical connections with other microorganisms, something methanogens have never been known to do before."

Methanosaeta species are important for a couple of reasons, Lovley and his co-authors point out. They are so active in methanogenic wetlands that they are considered the most prodigious methane producers on the planet. This is a concern because atmospheric methane is 20 times more effective at retaining heat than CO2, and as tundra soils warm due to climate change even greater methane releases are expected. Also, methane produced in anaerobic biomass digesters is economically important as "one of the few proven, economical, large-scale bioenergy strategies" in use today, they say.

Methane-producing microbial communities have been studied for decades, Lovley notes, "but all this time we were missing a major pathway of methane production." His group's study of Methanosaeta started when they found that digesters converting brewery wastes to methane contained large quantities of the microorganism Geobacter. Geobacter cannot produce methane, but it does break down more complex substrates to compounds that methane-producing bacteria can use.

The UMass Amherst teams knew from previous studies that Geobacter grow electrically conductive filaments known as microbial nanowires, which can transport electrons outside the cell to make electrical connections with minerals, electrodes or other cells. Methanosaeta were the dominant methane-producing microorganisms in the digesters and known to convert acetate to methane, but analysis of the gene expression in the digester revealed that Methanosaeta were also highly expressing genes for converting carbon dioxide to methane. The researchers speculated that Geobacter were feeding Methanosaeta electrons through their nanowires to promote Methanosaeta's methane production from CO2.

Further studies in which individual Geobacter and a Methanosaeta species were cultured together confirmed these suspicions, Lovley says. He and colleagues used radioactive tags to demonstrate that CO2 was being reduced to methane. They dubbed this transfer via microbial nanowire "direct interspecies electron transfer," or DIET. It was confirmed when they used a strain of Geobacter genetically altered to prevent it from producing nanowires, and the process did not work.

Lovely says the discovery of DIET challenges the concept held for decades that natural methane-producing microbial communities primarily exchange electrons through the production and consumption of hydrogen gas. DIET is a much more direct, and potentially more efficient mechanism for feeding electrons to methane-producing bacteria. "Now we need to improve predictions of how methane-producing microbial communities will respond to climate change. Microbial communities using DIET may react much differently than those that rely on hydrogen exchange," he says.

There are also short-term practical implications. "Once you realize that there are methane producers that can directly feed on electrons, you start thinking differently about how to optimize methane production from wastes," the microbiologist notes. "Although generating methane from wastes is one of the oldest bioenergy strategies and is practiced even in small villages in developing countries, its application on a large scale has been limited because it is slow." Trying to speed methane production in large-scale operations can disrupt the microbes' highly coordinated activity and systems can fail.

These communities evolved over billions of years to slowly convert organic matter to methane, Lovley explains. "Electrical circuitry that evolved for microbes to make methane from organic matter in swamps at their own leisurely pace may not match our wish for a faster process in waste digesters. Just as you need to upgrade electrical service in your house when you add more appliances, we made need to use synthetic biology or other engineering approaches to increase the capacity to move current through methanogenic microbial communities in digesters."

With the Massachusetts Department of Environmental Protection planning to begin in January 2014 phasing in a requirement that large-scale food service operations such as grocery stores, universities and correctional facilities compost food waste to increase diversion from landfills by 350,000 tons per year by 2020, anaerobic biodigesters may soon be very important to the state's business community. The new advances from UMass Amherst research could help to significantly improve their design and efficiency, Lovley notes.


'/>"/>

Contact: Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444
University of Massachusetts at Amherst
Source:Eurekalert  

Related biology news :

1. Microbiologists can now measure extremely slow life
2. Microbiologists eavesdrop on the hidden lives of microbes
3. OU microbiologists elected as fellows in the American Academy of Microbiology
4. Research reveals first evidence of hunting by prehistoric Ohioans
5. Studies reveal structure of EV71, a virus causing childhood illnesses
6. Researchers reveal how a single gene mutation leads to uncontrolled obesity
7. Study reveals how monarch butterflies recolonize northern breeding range
8. Circadian rhythms have profound influence on metabolic output, UCI study reveals
9. Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise
10. Ancient civilizations reveal ways to manage fisheries for sustainability
11. Study by Haverford College professor reveals unprecedented impact of Deepwater Horizon on deep ocean
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Microbiologists reveal unexpected properties of methane-producing microbe
(Date:2/2/2016)... , Feb. 2, 2016 This ... the bioinformatic market by reviewing the recent advances ... tools that drive the field forward. Includes forecast ... Identify the challenges and opportunities that exist ... and software solution developers, as well as IT ...
(Date:2/2/2016)... MOUNTAIN VIEW, Calif. , Feb. 2, 2016 ... diabetic retinopathy market, Frost & Sullivan recognizes US-based ... North America Frost & Sullivan Award for New ... technology provider in North America ... standard in the rapidly growing diabetic retinopathy market. ...
(Date:1/28/2016)... -- Synaptics (NASDAQ: SYNA ), a leading developer of human ... December 31, 2015. --> --> ... 2 percent compared to the comparable quarter last year to $470.5 ... $35.0 million, or $0.93 per diluted share. ... quarter of fiscal 2016 grew 9 percent over the prior year ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... International, a not-for-profit organization focused on the ethics and governance ... to patients around the world, today announced that the editors ... the Good Pharma Scorecard an ,Editors, Pick, ... of BMJ Open ,s ,Most Popular Articles, which includes ... read. Ed Sucksmith , assistant editor of ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... focused on the development and manufacture of biopharmaceuticals and therapeutics, announces an ... the 2016 BioProcess International Awards – Recognizing Excellence in the People, Organizations ...
(Date:2/11/2016)... 2016   BioInformant announces the February 2016 ... Products, Opportunities, Tools, and Technologies – Market Size, Segments, ... The first and only ... industry, BioInformant has more than a decade of historical ... by stem cell type. This powerful 175 page global ...
(Date:2/11/2016)... (PRWEB) , ... February 11, 2016 , ... ... of its new stem cell treatment clinic in Quito, Ecuador. The new facility ... and trauma applications to patients from around the world. , The new ...
Breaking Biology Technology: