Navigation Links
Microbial answer to plastic pollution?

Fragments of plastic in the ocean are not just unsightly but potentially lethal to marine life. Coastal microbes may offer a smart solution to clean up plastic contamination, according to Jesse Harrison presenting his research at the Society for General Microbiology's spring meeting in Edinburgh today.

The researchers from the University of Sheffield and the Centre for Environment, Fisheries and Aquaculture Science have shown that the combination of marine microbes that can grow on plastic waste varies significantly from microbial groups that colonise surfaces in the wider environment. This raises the possibility that the plastic-associated marine microbes have different activities that could contribute to the breakdown of these plastics or the toxic chemicals associated with them.

Plastic waste is a long-term problem as its breakdown in the environment may require thousands of years. "Plastics form a daily part of our lives and are treated as disposable by consumers. As such plastics comprise the most abundant and rapidly growing component of man-made litter entering the oceans," explained Jesse Harrison.

Over time the size of plastic fragments in the oceans decreases as a result of exposure to natural forces. Tiny fragments of 5 mm or less are called "microplastics" and are particularly dangerous as they can absorb toxic chemicals which are transported to marine animals when ingested.

While microbes are the most numerous organisms in the marine environment, this is the first DNA-based study to investigate how they interact with plastic fragments. The new study investigated the attachment of microbes to fragments of polyethylene a plastic commonly used for shopping bags. The scientists found that the plastic was rapidly colonised by multiple species of bacteria that congregated together to form a 'biofilm' on its surface. Interestingly, the biofilm was only formed by certain types of marine bacteria.

The group, led by Dr. Mark Osborn at Sheffield, plans to investigate how the microbial interaction with microplastics varies across different habitats within the coastal seabed research which they believe could have huge environmental benefits. "Microbes play a key role in the sustaining of all marine life and are the most likely of all organisms to break down toxic chemicals, or even the plastics themselves," suggested Mr Harrison. "This kind of research is also helping us unravel the global environmental impacts of plastic pollution," he said.


Contact: Laura Udakis
Society for General Microbiology

Related biology news :

1. Scientists decipher mechanism behind antimicrobial hole punchers
2. Cystic fibrosis patients may breathe easier, thanks to bioengineered antimicrobials
3. Hydrothermal vents: Hot spots of microbial diversity
4. Microbial biofilms evoke Jekyll & Hyde effects
5. Microbial fuel cells turn on the juice
6. Latest Integrated Microbial Genomes data management system update release
7. Bioinformatics technology developed at Argonne provides new insight into microbial activities
8. Genes selective signature aids detection of natural selection in microbial evolution
9. Climate changing gas from some surprising microbial liaisons
10. Expanded histology methods book covers processing of animal, plant, and microbial tissues
11. Undergraduates develop dirt-powered microbial fuel cells to light Africa
Post Your Comments:
Related Image:
Microbial answer to plastic pollution?
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
(Date:3/29/2017)... -- higi, the health IT company that operates the largest ... , today announced a Series B investment from BlueCross ... new investment and acquisition accelerates higi,s strategy to create ... health activities through the collection and workflow integration of ... and secures data today on behalf of over 36 ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive ... a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... , ... October 10, 2017 , ... Dr. Bob Harman, ... his local San Diego Rotary Club. The event entitled “Stem Cells ... and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced ... the NIH to develop RealSeq®-SC (Single Cell), expected to ... profiling small RNAs (including microRNAs) from single cells using ... highlights the need to accelerate development of approaches to ... "New techniques for measuring levels of ...
Breaking Biology Technology: