Navigation Links
Microbes may consume far more oil-spill waste than earlier thought

CAMBRIDGE, Mass., Oct. 20, 2010 -- Microbes living at the bottom of the Gulf of Mexico may consume far more of the gaseous waste from the Deepwater Horizon oil spill than previously thought, according to research carried out within 100 miles of the spill site.

A paper on that research, conducted before the Deepwater Horizon rig exploded six months ago today, will appear in a forthcoming issue of the journal Deep-Sea Research II. It describes the anaerobic oxidation of methane, a key component of the Gulf oil spill, by microbes living in seafloor brine pools.

"Because of the ample oil and gas reserves under the Gulf of Mexico, slow seepage is a natural part of the ecosystem," says Peter R. Girguis, associate professor of organismic and evolutionary biology at Harvard University. "Entire communities have arisen on the seafloor that depend on these seeps. Our analysis shows that within these communities, some microbes consume methane 10 to 100 times faster than we've previously realized."

Girguis is quick to note that methane is just part of what spilled from the ruptured Deepwater Horizon well for three months earlier this year, and that the rate at which methane spewed from the damaged well far exceeds the flow that microbes would ordinarily encounter in the Gulf.

Key to the work by Girguis, Harvard research scientist Scott D. Wankel, and their colleagues was the ability to use on-site mass spectrometry to obtain direct, accurate measurements of seafloor methane. It's been difficult to make such measurements because most tools don't work accurately 5,000 to 7,000 feet below the surface, where pressures can reach roughly 220 atmospheres.

Using this new technique, the scientists were able to ascertain methane concentrations in brine pools surrounding gas seeps at the bottom of the Gulf -- which were extremely high -- as well as in the water column above the pools. Combining this data with measurements of microbial activity, they were able to extrapolate just how quickly the microbes were consuming the methane.

"In fact, we observed oxidation of methane by these microbes at the highest rates ever recorded in seawater," Girguis says.

Methane is a greenhouse gas, up to 60 times more potent than carbon dioxide. Gigatons of the volatile gas are produced in seafloor sediments, above and beyond that generated by gas seeps that pockmark the floor of the Gulf of Mexico and other bodies of water. But, Girguis says, somewhere between the seafloor and the sea's surface, much of the methane vanishes.

"We found that concentrations of methane in brine pools are tremendously high: five to six orders of magnitude higher than in the water column above," Girguis says. "Mass spectrometry has given us a window on both the amount of methane diffusing into the water column and how much of this methane is consumed through anaerobic oxidation by microbes within the brine pool. It appears the microbes consume much of the methane, and the rest dissipates over time into the water column."

A study published in the journal Science in August detailed a bacterial species reportedly able to degrade oil anaerobically in the Gulf. But a subsequent Science paper contended that these microbes mainly digested gases like methane, propane, ethane, and butane, not oil. The Deep-Sea Research II paper adds to scientists' growing understanding of these species' ability to degrade the byproducts of the Deepwater Horizon spill.


Contact: Steve Bradt
Harvard University

Related biology news :

1. New Systems Biology Awards enable detailed study of microbes
2. Biosolids microbes pose manageable risk to workers
3. Study helps clarify role of soil microbes in global warming
4. Evolution in action: Our antibodies take evolutionary leaps to fight microbes
5. Understanding extinct microbes may influence the state of modern human health
6. Our microbes, ourselves
7. Microbes fuel energy debate
8. Special issue of BMC Microbiology spotlights standardized language for describing microbes
9. Microbes in mud flats clean up oil spill chemicals
10. Antibiotics take toll on beneficial microbes in gut
11. Plant protein doorkeepers block invading microbes, study finds
Post Your Comments:
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
(Date:3/29/2017)... , March 29, 2017  higi, the health IT ... North America , today announced a ... the acquisition of EveryMove. The new investment and acquisition ... of tools to transform population health activities through the ... data. higi collects and secures data today ...
(Date:3/24/2017)... 2017 Research and Markets has announced the ... & Trends - Industry Forecast to 2025" report to their ... The Global ... CAGR of around 15.1% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... ... program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand program ... in Volunteer Experience from US2020. , US2020’s mission is to change the trajectory ...
(Date:10/10/2017)... CALIFORNIA (PRWEB) , ... October 10, 2017 , ... ... technological innovation and business process optimization firm for the life sciences and healthcare ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation for ...
(Date:10/9/2017)... N.C. (PRWEB) , ... October 09, 2017 , ... At ... announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, ... Stubbs was a member of the winning team for the 2015 Breakthrough Prize in ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C ... software to perform Hi-C metagenome deconvolution using their own facilities, supplementing the ...
Breaking Biology Technology: