Navigation Links
Microbes contribute less to climate warming
Date:4/27/2010

New Haven, Conn.The physiology of microbes living underground could determine the amount of carbon dioxide emitted from soils on a warmer Earth, according to a study published online this week in Nature Geoscience.

Researchers at UC Irvine, Colorado State University and the Yale School of Forestry & Environmental Studies have found that as global temperatures increase, microbes in soil become less efficient over time in converting carbon in soil into carbon dioxide, which is a key contributor to climate warming.

Microbes, in the form of bacteria and fungi, use carbon for energy to breathe, or respire, and to grow in size and in number. A model developed by the researchers shows microbes exhaling carbon dioxide furiously for a short period of time in a warmer environment, leaving less carbon for growth. As warmer temperatures persist, the less-efficient use of carbon by the microbes causes them to decrease in number, eventually resulting in less carbon dioxide being emitted into the atmosphere.

"Microbes aren't the destructive agents of global warming that scientists had previously believed," said Steven Allison, lead author of the study and assistant professor of ecology and evolutionary biology at UC Irvine. "Microbes function like humansthey take in carbon-based fuel and breathe out carbon dioxide. They are the engines that drive carbon cycling in soils. In a balanced environment, plants store carbon in the soil and microbes use that carbon to grow. The microbes then produce enzymes that convert soil carbon into atmospheric carbon dioxide."

The study, "Soil-Carbon Response to Warming Dependent on Microbial Physiology," contradicts the results of older models that assume microbes will continue to spew ever-increasing amounts of carbon dioxide into the atmosphere as the climate continues to warm. The new simulations suggest that if microbial efficiency declines in a warmer world, carbon dioxide emissions will fall back to pre-warming levels, a pattern seen in field experiments. But if microbes manage to adapt to the warmthfor instance through increases in enzyme activityemissions could intensify.

"When we developed a model based on the actual biology of soil microbes, we found that soil carbon may not be lost to the atmosphere as the climate warms," said Matthew Wallenstein, of the Natural Resource Ecology Laboratory at Colorado State University. "Conventional ecosystem models that didn't include enzymes did not make the same predictions."

Mark Bradford, assistant professor of terrestrial ecosystem ecology at Yale, said there is intense debate in the scientific community over whether the loss of soil carbon will contribute to global warming. "The challenge we have in predicting this is that the microbial processes causing this loss are poorly understood," he said. "More research in this area will help reduce uncertainties in climate prediction."


'/>"/>

Contact: David DeFusco
david.defusco@yale.edu
203-436-4842
Yale University
Source:Eurekalert

Related biology news :

1. Earth microbes may contaminate the search for life on Mars
2. Soil microbes produce less atmospheric CO2 than expected with climate warming
3. Explorers census hard-to-see sea life: microbes, tiny animals key to Earths food, carbon systems
4. Dormant microbes promote diversity, serve environment
5. Microbes produce fuels directly from biomass
6. Hot microbes cause groundwater cleanup rethink
7. Marine microbes creating green waves in industry
8. Marine microbes creating green waves in industry
9. Microbes and their hosts -- exploring the complexity of symbiosis in DNA and cell biology
10. Methane-eating microbes can use iron and manganese oxides to breathe
11. Plant protein doorkeepers block invading microbes, study finds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... About Voice Recognition Biometrics Voice recognition biometrics ... a stored voiceprint template. Acoustic features of an ... are compared to distinguish between individual voices. Voice ... PCs already have a microphone and can authenticate ... are most likely to be deployed in telephone-based ...
(Date:2/8/2017)... Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion in ... a compound annual growth rate (CAGR) of 24.0% through 2021. ... for synthetic biology. - Analyses of global market trends, with ... annual growth rates (CAGRs) through 2021. - Coverage of core ...
(Date:2/8/2017)... 7, 2017 Report Highlights The ... from $8.3 billion in 2016 at a compound annual ... Report Includes - An overview of the global ... with data from 2015 and 2016, and projections of ... of the market on the basis of product type, ...
Breaking Biology News(10 mins):
(Date:2/24/2017)... 2017 China Biologic Products, Inc. (NASDAQ: CBPO) ("China ... company in China, today announced its financial results for the ... Fourth Quarter 2016 Financial Highlights Total ... in RMB terms, or increased by 13.6% in USD terms ... of 2015. Gross profit increased by 13.3% ...
(Date:2/23/2017)... -- Financial Highlights ... unaudited)Three Months Ended December 31,Twelve Months Ended December 31,20162015% ... $           300$   ... Product Revenue 3539(10)%9498(4)%Kuvan Net Product ... 756025%297303(2)%Vimizim Net Product Revenue ...
(Date:2/23/2017)... Atlanta, it seems everyone has a chance to express their ... expressive and dynamic community unlike any other. The businesses that ... With their newest salon in ... on that tradition with a unique, fresh approach to head ... the newest of 13 nationwide locations, each of them well-situated ...
(Date:2/23/2017)... ... February 23, 2017 , ... ... evaluation of multiple immunoassay-based threat detection technologies by researchers from the Pacific ... biosensor threat detection technology was found to have the best level of ...
Breaking Biology Technology: