Navigation Links
MicroRNA cocktail helps turn skin cells into stem cells
Date:2/2/2011

LA JOLLA, Calif., February 1, 2011 Stem cells are ideal tools to understand disease and develop new treatments; however, they can be difficult to obtain in necessary quantities. In particular, generating induced pluripotent stem (iPS) cells can be an arduous task because reprogramming differentiated adult skin cells into iPS cells requires many steps and the efficiency is very low researchers might end up with only a few iPS cells even if they started with a million skin cells. A team at Sanford-Burnham Medical Research Institute (Sanford-Burnham) set out to improve this process. In a paper published February 1 in The EMBO Journal, the team identified several specific microRNAs (miRNAs) that are important during reprogramming and exploited them to make the transition from skin cell to iPS cell more efficient.

"We identified several molecular barriers early in the reprogramming process and figured out how to remove them using miRNA," said Tariq Rana, Ph.D., director of the RNA Biology program at Sanford-Burnham and senior author of the study. "This is significant because it will enhance our ability to use iPS cells to model diseases in the laboratory and search for new therapies."

"Our study not only presents new mechanistic insights about the role of non-coding RNAs during somatic cell reprogramming but also provides proof of principle using microRNAs as great enhancers for iPS cell generation," added Zhonghan Li, graduate student and first author of the study.

MiRNAs are small strands of genetic material that may play a major role in many diseases by gumming up protein production. In this study, Dr. Rana and his colleagues observed that three groups of miRNAs, including two known individually as miR-93 and miR-106b, are activated as part of a defense mechanism that occurs when cells are stressed by the standard skin cell reprogramming process. Digging deeper, they determined that miR-93 and miR-106b target two proteins called Tgfbr2 and p21, which slow up the path to iPS cells by halting the cell cycle the cell's process of duplicating its DNA and dividing into two identical "daughter" cells and promoting cell death.

Not only does this finding reveal more about the genetic underpinnings of iPS cell formation, but the researchers took advantage of this new information to speed up the process. When they added extra miR-93 and miR-106b to skin cells, Tgfbr2 and p21 were blocked, more cells survived, and iPS cells were more readily obtained.

"In some respects, this work may be regarded as a landmark contribution to the field of stem cell biology in general and cellular reprogramming in particular," said Evan Y. Snyder, M.D., Ph.D., director of Sanford-Burnham's Stem Cells and Regenerative Biology program. "Up until now, cellular differentiation and de-differentiation has focused principally on the expression of genes; this work indicates that the strategic non-expression of genes may be equally important. The work has demonstrated that miRNAs do function in the reprogramming process and that the generation of iPSCs can be greatly enhanced by modulating miRNA action. In addition to helping us generate better tools for the stem cell field, such findings inevitably facilitate our understanding of normal and abnormal stem cell behavior during development and in disease states."


'/>"/>

Contact: Josh Baxt
jbaxt@sanfordburnham.org
858-795-5236
Sanford-Burnham Medical Research Institute
Source:Eurekalert

Related biology news :

1. MicroRNA suppresses prostate cancer stem cells and metastasis
2. MicroRNAs dictate the Epstein-Barr virus elaborate waiting game, cancer formation
3. Newly identified RNA sequence is key in microRNA processing
4. Red blood cells have a tiny but effective protector -- microRNA
5. Study of microRNA helps NIH scientists unlock secrets of immune cells
6. MicroRNA network study implicates rewired interactions in cancer
7. Pitt researchers discover big role for microRNA in lethal lung fibrosis
8. Penn biologists determine microRNA activity is suppressed in mouse ovum
9. Scientists use microRNAs to track evolutionary history for first time
10. MicroRNA in human saliva may help diagnose oral cancer
11. MicroRNAs help control HIV life cycle
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 NXT-ID, Inc. (NASDAQ: ... company, announces the appointment of independent Directors Mr. Robin ... its Board of Directors, furthering the company,s corporate governance and ... Gino Pereira ... look forward to their guidance and benefiting from their considerable ...
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:6/19/2017)... , ... June 19, 2017 , ... ... for clinical development reported today that it is launching two new additions of ... will be demonstrating new capabilities at the DIA 2017 Annual Meeting in Chicago, ...
(Date:6/16/2017)... ... 2017 , ... Cognition Corporation , a software company ... of its “From the Helm” Webinar Series. , The next two free ... design control exercises. Led by David Cronin, Cognition’s CEO, the half-hour public webinars ...
(Date:6/15/2017)... ... 2017 , ... New resistant soybean and cotton cropping systems ... amaranth and other broadleaf weeds resistant to glyphosate. But scientists with the Weed ... known to drift and to cause harm to sensitive, off-target broadleaf plants. , ...
(Date:6/15/2017)... (PRWEB) , ... June 15, 2017 , ... ... Saranas, a promising new medical device startup. Dan Parsley, angelMD’s SVP of Corporate ... angelMD members, and this angelMD syndicate is part of Saranas’ recently announced $4 ...
Breaking Biology Technology: