Navigation Links
Metabolism in reverse: Making biofuels at full-throttle pace
Date:8/10/2011

HOUSTON -- (Aug. 10, 2011) -- In a biotechnological tour de force, Rice University engineering researchers this week unveiled a new method for rapidly converting simple glucose into biofuels and petrochemical substitutes. In a paper published online in Nature, Rice's team described how it reversed one of the most efficient of all metabolic pathways -- the beta oxidation cycle -- to engineer bacteria that produce biofuel at a breakneck pace.

Just how fast are Rice's single-celled chemical factories? On a cell-per-cell basis, the bacteria produced the butanol, a biofuel that can be substituted for gasoline in most engines, about 10 times faster than any previously reported organism.

"That's really not even a fair comparison because the other organisms used an expensive, enriched feedstock, and we used the cheapest thing you can imagine, just glucose and mineral salts," said Ramon Gonzalez, associate professor of chemical and biomolecular engineering at Rice and lead co-author of the Nature study.

Gonzalez's laboratory is in a race with hundreds of labs around the world to find green methods for producing chemicals like butanol that have historically come from petroleum.

"We call these 'drop-in' fuels and chemicals, because their structure and properties are very similar, sometimes identical, to petroleum-based products," he said. "That means they can be 'dropped in,' or substituted, for products that are produced today by the petrochemical industry."

Butanol is a relatively short molecule, with a backbone of just four carbon atoms. Molecules with longer carbon chains have been even more troublesome for biotech producers to make, particularly molecules with chains of 10 or more carbon atoms. Gonzalez said that's partly because researchers have focused on ramping up the natural metabolic processes that cells use to build long-chain fatty acids. Gonzalez and students Clementina Dellomonaco, James Clomburg and Elliot Miller took a completely different approach.

"Rather than going with the process nature uses to build fatty acids, we reversed the process that it uses to break them apart," Gonzalez said. "It's definitely unconventional, but it makes sense because the routes nature has selected to build fatty acids are very inefficient compared with the reversal of the route it uses to break them apart."

The beta oxidation process is one of biology's most fundamental, Gonzalez said. Species ranging from single-celled bacteria to human beings use beta oxidation to break down fatty acids and generate energy.

In the Nature study, Gonzalez's team reversed the beta oxidation cycle by selectively manipulating about a dozen genes in the bacteria Escherichia coli. They also showed that selective manipulations of particular genes could be used to produce fatty acids of particular lengths, including long-chain molecules like stearic acid and palmitic acid, which have chains of more than a dozen carbon atoms.

"This is not a one-trick pony," Gonzalez said. "We can make many kinds of specialized molecules for many different markets. We can also do this in any organism. Some producers prefer to use industrial organisms other than E. coli, like algae or yeast. That's another advantage of using reverse-beta oxidation, because the pathway is present in almost every organism."


'/>"/>

Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
Source:Eurekalert  

Related biology news :

1. UNC-Duke ties lead to collaborative finding about cell division & metabolism
2. Modeling plant metabolism to optimize oil production
3. New book on intermediary metabolism reveals intriguing complexity
4. Marine snails get a metabolism boost
5. Jefferson researchers unlock key to personalized cancer medicine using tumor metabolism
6. At EB2011: The role of metabolism in disease
7. Body weight regulation and metabolism focus of workshop
8. Hot-bunking bacterium recycles iron to boost ocean metabolism
9. Metabolism models may explain why Alzheimers disease kills some neuron types first
10. U of I scientists develop tool to trace metabolism of cancer-fighting tomato compounds
11. Research targets basic metabolism of disease-causing fungi, bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Metabolism in reverse: Making biofuels at full-throttle pace
(Date:6/22/2016)... BETHESDA, Md. , June 22, 2016  The American ... by Trade Show Executive Magazine as one of ... Summit on May 25-27 at the Bellagio in ... based on the highest percentage of growth in each of ... number of exhibiting companies and number of attendees. The 2015 ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created ... services and solutions to the healthcare market. The company's primary focus is on ... sales and marketing strategies that are necessary to help companies efficiently bring their ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... 2016  The Prostate Cancer Foundation (PCF) is pleased to announce ... cures for prostate cancer. Members of the Class of 2016 were selected from ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: