Navigation Links
Metabolic 'breathalyzer' reveals early signs of disease
Date:2/6/2012

MADISON The future of disease diagnosis may lie in a "breathalyzer"-like technology currently under development at the University of Wisconsin-Madison.

New research published online in February in the peer-reviewed journal Metabolism demonstrates a simple but sensitive method that can distinguish normal and disease-state glucose metabolism by a quick assay of blood or exhaled air.

Many diseases, including diabetes, cancer, and infections, alter the body's metabolism in distinctive ways. The new work shows that these biochemical changes can be detected much sooner than typical symptoms would appear even within a few hours offering hope of early disease detection and diagnosis.

"With this methodology, we have advanced methods for tracing metabolic pathways that are perturbed in disease," says senior author Fariba Assadi-Porter, a UW-Madison biochemist and scientist at the Nuclear Magnetic Resonance Facility at Madison. "It's a cheaper, faster, and more sensitive method of diagnosis."

The researchers studied mice with metabolic symptoms similar to those seen in women with polycystic ovary syndrome (PCOS), an endocrine disorder that can cause a wide range of symptoms including infertility, ovarian cysts, and metabolic dysfunction. PCOS affects approximately 1 in 10 women but currently can only be diagnosed after puberty and by exclusion of all other likely diseases a time-consuming and frustrating process for patients and doctors alike.

"The goal is to find a better way of diagnosing these women early on, before puberty, when the disease can be controlled by medication or exercise and diet, and to prevent these women from getting metabolic syndromes like diabetes, obesity, and associated problems like heart disease," Assadi-Porter says.

The researchers were able to detect distinct metabolic changes in the mice by measuring the isotopic signatures of carbon-containing metabolic byproducts in the blood or breath. They injected glucose containing a single atom of the heavier isotope carbon-13 to trace which metabolic pathways were most active in the sick or healthy mice. Within minutes, they could measure changes in the ratio of carbon-12 to carbon-13 in the carbon dioxide exhaled by the mice, says co-author Warren Porter, a UW-Madison professor of zoology.

One advantage of the approach is that it surveys the workings of the entire body with a single measure. In addition to simplifying diagnosis, it could also provide rapid feedback about the effectiveness of treatments.

"The pattern of these ratios in blood or breath is different for different diseases for example cancer, diabetes, or obesity which makes this applicable to a wide range of diseases," explains Assadi-Porter.

The technology relies on the fact that the body uses different sources to produce energy under different conditions. "Your body changes its fuel source. When we're healthy we use the food that we eat," Porter says. "When we get sick, the immune system takes over the body and starts tearing apart proteins to make antibodies and use them as an energy source."

That shift from sugars to proteins engages different biochemical pathways in the body, resulting in distinct changes in the carbon isotopes that show up in exhaled carbon dioxide. If detected quickly, these changes may signal the earliest stages of disease.

The researchers found similar patterns using two independent assays nuclear magnetic resonance spectroscopy on blood serum and cavity ring-down spectroscopy on exhaled breath. The breath-based method is particularly exciting, they say, because it is non-invasive and even more sensitive than the blood-based assays.

In the mice, the techniques were sensitive enough to detect statistically significant differences between even very small populations of healthy and sick mice.

The current cavity ring-down spectroscopy analysis uses a machine about the size of a shoebox, but the researchers envision a small, hand-held "breathalyzer" that could easily be taken into rural or remote areas. They co-founded a company, Isomark, LLC, to develop the technology and its applications. They hope to explore the underlying biology of disease and better understand whether the distinctive biochemical changes they can observe are causative or side effects.


'/>"/>
Contact: Fariba Assadi-Porter
fariba@nmrfam.wisc.edu
608-261-1167
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. New test spots early signs of inherited metabolic disorders
2. Metabolic defects in mice corrected with transplanted embryonic neurons
3. New inherited neurometabolic disorder discovered
4. Cell dysfunction linked to obesity and metabolic disorders
5. Cardiotrophin 1 shows promising results for treatment of obesity and metabolic syndrome
6. Metabolic state of brain cancer stem cells significantly different than the cancer cells they create
7. Powerful antioxidant resveratrol prevents metabolic syndrome in lab tests: U of A study
8. UC Davis researchers find disease-causing fat cells in those with metabolic syndrome
9. Metabolic syndrome increases risk of both major types of primary liver cancer
10. Key metabolic pathway implicated in intractable form of breast cancer
11. Hold your breath: Air pollution plays role in cardiac, metabolic diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access ... 15.1% over the next decade to reach approximately $1,580 million by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... Lithuania , March 21, 2017   ... and object recognition technologies, today announced the release ... kit (SDK), which provides improved facial recognition using ... cameras on a single computer. The new version ... to improve accuracy, and it utilizes a Graphing ...
(Date:3/20/2017)... , March 20, 2017 At this year,s CeBIT ... -based biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together ... is this year,s CeBIT partner country. At the largest German biometrics company ... use: fingerprint, face and iris recognition as well as DERMALOG´s multi-biometrics system.   ... ...
Breaking Biology News(10 mins):
(Date:6/19/2017)... ... , ... A colony of healthy honey bees is like a superorganism--individual bees ... nectar containing nutrients necessary for growth and survival. Better nutrition gives the colony a ... to a decline in honey bee health. Sick and weakened bees diminish the colony's ...
(Date:6/16/2017)... ... 16, 2017 , ... Cambridge Semantics , the leading ... Smart Data Lake® (Anzo SDL) solution was named a finalist in the ... Information Industry Association (SIIA) CODiE Awards. , Finalists represent the best products, ...
(Date:6/15/2017)... ... June 15, 2017 , ... New resistant ... new options for managing Palmer amaranth and other broadleaf weeds resistant to glyphosate. ... are necessary. Auxin herbicides are known to drift and to cause harm to ...
(Date:6/15/2017)... ... June 15, 2017 , ... The ... an artist’s journey through creative experimentation and interdisciplinary collaboration. Feature Creep, a solo ... 22nd. An opening reception will be held at EKG, located at 3600 Market ...
Breaking Biology Technology: