Navigation Links
Media highlights for February in Biophysical Journal
Date:3/10/2008

Bethesda, MD A new and notable article entitled Passage Times for Polymer Translocation Pulled through a Narrow Pore appears in Volume 94, Issue 5, of the Biophysical Journal, which is available online.

Passage Times for Polymer Translocation Pulled through a Narrow Pore

When polymeric molecules squeeze through a nanometer-sized pore in membranes, in a process known as translocation, they leave a distinct signature at the pore. Present-day techniques can exploit translocation to recognize individual polymeric molecules by analyzing these signatures. Interestingly, one encounters translocation more frequently as a serious bottleneck: the prospect of polymeric molecules passing through nanometer-sized pores in inter/intra-cellular membranes hinders efficient delivery of drug molecules to their activation sites, and of healthy gene fragments to their target sites in gene therapy.

The physics of translocation is complex since our intuition, based on the macroscopic world, fails: concepts, such as "translocation is slow because the pore resists the passage of the molecule through friction", cannot be trusted at the nanoscale. Instead, other concepts like fluctuations in translocation dynamics at a molecular level are much more important.

Recently, we have made a significant breakthrough in understanding the physics of translocation. Starting from the microscopic dynamics of the polymeric molecule, we showed that its translocation behavior is strongly dominated by "memory effects" in the molecule. Each translocative step forward for the molecule through the pore generates a restoring tension that makes a following backward step through the pore very likely: as if the molecule remembers that it took a step forward, and it wants to return to the previous step. Consequently, every part of the molecule passes back and forth through the pore many, many times. Two most striking consequences of these wild fluctuations are that under a constant pulling force, the speed of translocation is not uniform; and that a molecule twice as long does not take twice, but four times longer to translocate.

Having unraveled the memory effects of the molecule, we are in a pivotal position to devise new methods to suppress or enhance these memory effects --- and consequently, the back-and-forth fluctuation movements of the molecule through the pore --- by putting in control mechanisms to suit situation-specific requirements. For example, to facilitate faster delivery of drug molecules or healthy gene fragments one needs to suppress the memory effects, while to advance single-molecule characterization techniques using translocation, enhancement of the memory effects is required, so that a given part of the molecule revisits the pore more frequently.


'/>"/>

Contact: Ellen R. Weiss
eweiss@biophysics.org
301-634-7176
Biophysical Society
Source:Eurekalert

Related biology news :

1. 2008 Ocean Sciences Meeting -- media advisory 2
2. March GEOLOGY and GSA TODAY media highlights
3. Media highlights in the March 1 issue of Biophysical Journal
4. Priming scientists for successful media interviews
5. Media highlights in the January issues of Biophysical Journal
6. February Geology and GSA Today media highlights
7. Media advisory -- 2008 Ocean Sciences Meeting
8. Oliguridylation-mediated histone mRNA decay
9. Immediate action needed to save corals from climate change
10. Media highlights in the Dec. 15 issue of Biophysical Journal
11. Better protection for biomedial devices could result from Rutgers-Camden research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... -- Perimeter Surveillance & Detection Systems, Biometrics ... Support & Other Service  The latest report ... analysis of the global Border Security market . ... $17.98 billion in 2016. Now: In November ... software and hardware technologies for advanced video surveillance. ...
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... Raleigh, NC (PRWEB) , ... June 24, 2016 , ... ... find the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings ... here to read it now. , Diagnostic biomarkers are signposts in the blood, ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)...   EpiBiome , a precision microbiome engineering company, ... financing from Silicon Valley Bank (SVB). The financing will ... its drug development efforts, as well as purchase additional ... has been an incredible strategic partner to us – ... would provide," said Dr. Aeron Tynes Hammack , ...
Breaking Biology Technology: