Navigation Links
Mechanisms regulating inflammation associated with type 2 diabetes, cancer identified
Date:3/1/2013

(Boston) A study led by researchers at Boston University School of Medicine (BUSM) has identified epigenetic mechanisms that connect a variety of diseases associated with inflammation. Utilizing molecular analyses of gene expression in macrophages, which are cells largely responsible for inflammation, researchers have shown that inhibiting a defined group of proteins could help decrease the inflammatory response associated with diseases such as obesity, type 2 diabetes, cancer and sepsis.

The study, which is published online in the Journal of Immunology, was led by first author Anna C. Belkina, MD, PhD, a researcher in the department of microbiology at BUSM, and senior author Gerald V. Denis, PhD, associate professor of pharmacology and medicine at BUSM.

Epigenetics is an emerging field of study exploring how genetically identical cells express their genes differently, resulting in different phenotypes, due to mechanisms other than DNA sequence changes.

Previous studies have shown that a gene, called Brd2, is associated with high insulin production and excessive adipose (fat) tissue expansion that drives obesity when Brd2 levels are low and cancer when Brd2 levels are high. The Brd2 gene is a member of the Bromodomain Extra Terminal (BET) family of proteins and is closely related to Brd4, which is important in highly lethal carcinomas in young people, as well as in the replication of Human Immunodeficiency Virus (HIV).

The BET family proteins control gene expression epigenetically by acting on chromatin, the packaging material for genes, rather than on DNA directly. This mechanism of action is being explored because the interactions are not reflected in genome sequencing information or captured through DNA-based genetic analysis. In addition, this layer of gene regulation has recently been shown to be a potential target in the development of novel epigenetic drugs that could target several diseases at once.

The study results show that proteins in the BET family have a strong influence on the production of pro-inflammatory cytokines in macrophages. This indicates that the defined family of proteins govern many aspects of acute inflammatory diseases, such as type 2 diabetes, sepsis and cardiovascular disease, among others, and that they should be explored as a potential target to treat a wide variety of diseases.

"Our study suggests that it is not a coincidence that patients with diabetes experience higher risk of death from cancer, or that patients with chronic inflammatory diseases, such as atherosclerosis and insulin resistance, also are more likely to be obese or suffer from inflammatory complications," said Belkina. "This requires us to think of diverse diseases of different organs as much more closely related than our current division of medical specialities allows."

Future research should explore how to successfully and safely target and inhibit these proteins in order to stop the inflammatory response associated with a variety of diseases.


'/>"/>

Contact: Jenny Eriksen Leary
jenny.eriksen@bmc.org
617-638-6841
Boston University Medical Center
Source:Eurekalert

Related biology news :

1. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
2. UF receives $1 million from Keck Foundation to study mechanisms of inherited disease
3. Discovery of mechanisms predicting response to new treatments in colon cancer
4. Symposium: Protein-Folding Diseases: Models & Mechanisms
5. Force of nature: Defining the mechanical mechanisms in living cells
6. Researchers identify mechanisms that allow embryonic stem cells to become any cell in the human body
7. Mechanisms for a beneficial effect of moderate alcohol consumption on osteoporosis in women
8. X-rays reveal the self-defence mechanisms of bacteria
9. FASEB SRC announces conference registration open for: Mechanisms in Plant Development Conference
10. FASEB SRC announces conference registration open for: Neural Mechanisms in Cardiovascular Regulation
11. FASEB SRC announces: Molecular Mechanisms & Physiological Consequences of Protein Aggregation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/4/2017)... , Jan. 4, 2017  CES 2017 – ... biometric sensor technology, today announced the launch of ... sensor systems, the highly-accurate biometric sensor modules that ... biometric technology, experience and expertise. The two new ... designed specifically for hearables, and Benchmark BW2.0, a ...
(Date:12/20/2016)... , Dec. 20, 2016 The ... sharing, rental and leasing is stoking significant interest ... radio frequency technology, Bluetooth low energy (BLE), biometrics ... as the next wave of wireless technologies in ... access system to advanced access systems opens the ...
(Date:12/16/2016)... Research and Markets has announced the addition ... to 2021" report to their offering. ... The biometric vehicle access system market, ... of 14.06% from 2016 to 2021. The market is estimated to ... 854.8 Million by 2021. The growth of the biometric vehicle access ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... January 18, 2017 According to a new market research ... Cytology, Infectious Disease), & End User (Molecular Diagnostic Laboratories, Academic and Research Institutions) ... reach USD 739.9 Million by 2021 from USD 557.1 Million in 2016, growing ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... Mass. , Jan. 18, 2017 ... applying mechanistic modeling to drug research and development, ... PhD, Co-Founder, President, and CEO of Applied BioMath, ... for Informatics and Modeling (BAGIM) Meeting on Thursday ... Cambridge , MA.   Dr. Burke,s ...
(Date:1/18/2017)... (PRWEB) , ... January 18, 2017 , ... ... for Clinical Ops Executives 2017 in its continued commitment to the advancement of ... makers to discuss current issues related to clinical trial planning and management. ...
(Date:1/18/2017)... ... January 18, 2017 , ... Whitehouse Labs has furthered ... Molecular Research, Inc. (AMRI), the scientific staff dedicated to Extractables / Leachables & ... further growth in 2017. Extractable & Leachable evaluations have become increasingly more vital ...
Breaking Biology Technology: