Navigation Links
Measuring protein movements with nanosecond resolution
Date:3/15/2010

Researchers at the Department of Chemistry at the Technische Universitt Mnchen (TUM) have developed a method that allows the observation of local movements in proteins on a time scale of nanoseconds to microseconds. Upon examining movements of the protein villin using this method they found two structures that were otherwise barely distinguishable from one another. Quick nanosecond-scale structure changes essential for the protein function can take place in the one, while the other remains rigid. These results have been published in the online issue of the journal "Proceedings of the National Academy of Sciences, USA" (PNAS).

One of the five most important proteins in a cell is actin. Its filaments hold the cell together and keep its key components in their places. The protein villin links the actin filaments and thus contributes significantly to the stabilization of cell structures. Because of its small size, HP35, the part of the villin protein responsible for binding the actin filaments, has been the subject of numerous computer simulations aimed at understanding protein dynamics. However, there have been no experimental studies, as these protein movements take place on a scale of microseconds and even nanoseconds a time scale that has, for all intents and purposes, eluded experimental access, until now.

A method developed by Professor Thomas Kiefhaber's work group, based on fast electron transfer between the different parts of a protein, now makes it possible for the first time to directly examine fast structural changes. They selected the actin-binding part of the villin protein, HP35, as a model system. The new experimental work by Thomas Kiefhaber's team has shown that the folded protein is available in two conformations that are very similar structurally, but display decidedly different dynamic properties. While significant structural changes are not possible in a rigid conformation, flexible conformations allow parts of the protein responsible for binding actin to fold and unfold on a time scale of 100 nanoseconds.

The two conformations are in equilibrium and transform into one another within one microsecond. The structural similarity of the two conformations explains why they were not previously discovered neither in structural examinations nor in computer simulations. Using time-resolved electron transfer measurements it is now possible to differentiate between and characterize the different states based on their different motilities.

The insights from this study are fundamental to understanding the function of proteins and will help shed light of the mechanisms behind the folding and misfolding of proteins. The scientists now hope to further develop this method in order to apply it to larger proteins important for the regulation of cell functions.


'/>"/>

Contact: Andreas Battenberg
battenberg@zv.tum.de
49-892-891-2890
Technische Universitaet Muenchen
Source:Eurekalert

Related biology news :

1. Atmospheric measuring device for understanding smog formation
2. Positron emission tomography superior to standard evaluation tools in measuring treatment response
3. New approach to measuring carbon in forests
4. Biosensor for measuring stress in cells
5. Measuring the stress of forested areas
6. Measuring calcium in serpentine soils
7. Measuring water from space
8. Measuring molecules to improve drug design
9. Measuring snow with a bucket, a windmill, and the sun?
10. Carbon measuring system to help mitigate climate change
11. Measuring intellectual disability
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/6/2016)... Dec. 6, 2016 Valencell , the leading ... has seen a third consecutive year of triple digit ... in 2016 with a 360 percent increase in companies ... increase was driven by sales of its wrist and ... in its technology for hearables for fitness and healthcare ...
(Date:12/2/2016)... PUNE, India , December 1, 2016 /PRNewswire/ ... Market by Authentication type (Fingerprint, Voice), Future Technology (Iris ... Vehicle), and Region - Global Forecast to 2021", ... be USD 442.7 Million in 2016, and is ... 2021, at a CAGR of 14.06%. ...
(Date:11/30/2016)... , Nov. 30, 2016  higi SH llc ... partnership initiative targeting national brands, industry thought-leaders and ... their respective audiences for taking steps to live ... inception in 2012, higi has built the largest ... over 38 million people who have conducted over ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , Dec. 8, 2016 Savannah River ... technologies and selected NewTechBio,s NT-MAX Lake & ... based beneficial bacteria, in conjunction with Hexa Armor/ ... deficiencies with National Pollutant Discharge Elimination System requirements. ... experienced a steady history of elevated pH levels, ...
(Date:12/7/2016)... ... December 07, 2016 , ... ACEA Biosciences, Inc. presented ... expansion clinical trial for its lead drug candidate, AC0010, at the World Conference ... was to determine the safety, antitumor activity, and recommended phase II dosage of ...
(Date:12/7/2016)... EDMONTON , Dec. 7, 2016 /PRNewswire/ - ... the development and commercialization of immunotherapeutic products for ... has entered into an Antibody Manufacturing Development Program ... , USA) for its oregovomab antibody product. ... its Phase IIb clinical study in ovarian cancer ...
(Date:12/7/2016)... -- The report "Acrylic Processing Aid Market by Polymer Type (PVC), Fabrication Process ... Global Forecast to 2026", published by MarketsandMarkets, the global market size was USD ... 2026, registering an of CAGR of 6.2% between 2016 and 2026. ... ... MarketsandMarkets Logo , ...
Breaking Biology Technology: