Navigation Links
Measles virus, a weapon against cancer?

GALVESTON, Texas When most people in the developed world think of measles, what comes to mind is only a dim memory of a vaccination at a pediatrician's office. But while childhood vaccination has virtually eliminated measles from North America and much of Europe, researchers remain interested in the virus.

This fascination persists partly because improving the measles vaccine could help eliminate the more than 10 million measles infections and 150,000 measles-caused deaths that still occur worldwide. But it also has another source: Scientists believe that modified measles viruses can be "re-targeted" to attack only tumor cells, and thus transformed into a powerful new therapy for cancer.

Now, a new discovery about the process by which measles invades cells has brought the dream of transforming the virus into a weapon against cancer one step closer to reality. A research team including scientists from the University of Texas Medical Branch at Galveston and the Mayo Clinic in Rochester, Minn. have produced a detailed picture of the intricate molecular mechanism that measles virus uses to attach to and enter the cells it infects.

The key players are two proteins that form the spherical envelope surrounding the genetic material of the measles virus. One is an attachment protein that binds to receptor molecules on the outer membrane of a host cell, and the other is a fusion protein that merges the viral envelope with the cell membrane, enabling the virus to infect the cell. The study, published in the recent issue of Nature Structural Biology & Molecular Biology demonstrated that the intrinsic flexibility of the attachment protein is a necessary condition to initiate the cell fusion process.

"The overall goal of our Mayo Clinic collaborator, Roberto Cattaneo, is to redirect the measles virus to attack specific cancer cells, and to accomplish that he and his group need to know as much as they can about the mechanisms of measles infection," said UTMB professor Werner Braun, an author of the study. "We have a long-standing collaboration with his group, using our theoretical predictions and computational methods to help them better target their experimental work."

UTMB Health research scientist Numan Oezguen used computer-based molecular modeling to predict interaction sites and suggested specific mutations that would alter the interaction and mobility of the attachment protein heads. Results of these experiments performed by the Mayo Clinic team led by Cattaneo showed that cell entry of the measles virus depends on a twisting motion of the attachment protein's heads.

To produce an accurate portrait of the dynamic mechanism the Mayo Clinic group created measles viruses with mutations affecting the mobility of their attachment protein heads, and then tested the mutated viruses to determine each type's ability to infect cells. "What Dr. Cattaneo's experiments showed was that the motion of these two parts of the attachment protein has a dramatic effect on infectivity," Braun said. "In a simplified sense, we think this works like a lever if the cell receptors pull on the attachment protein properly, they generate this type of motion, and this triggers the fusion protein and leads to infectivity."


Contact: Jim Kelly
University of Texas Medical Branch at Galveston

Related biology news :

1. Mayo researchers describe measles viral protein movement
2. Researchers recreate SARS virus, open door for potential defenses against future strains
3. Hepatitis C virus faces new weapon from Florida State scientists
4. New medical weapons to protect against anthrax attacks
5. Understanding robustness in organisms -- a potential weapon against infectious diseases
6. Atrazine is the main weapon against weeds in sweet corn, with few alternatives
7. Multifunctional polymer neutralizes both biological and chemical weapons
8. UCF professors vaccine could be lethal weapon against malaria, cholera
9. Lombardi research: Monoclonal antibodies primed to become potent immune weapons against cancer
10. Researchers identify potential new weapon in battle against HIV infection
11. Control of blood vessels a possible weapon against obesity
Post Your Comments:
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/2/2016)... -- The Department of Transport Management (DOTM) of ... US Dollar project, for the , Supply and ... and IT Infrastructure , to Decatur ... of Identity Management Solutions. Numerous renowned international vendors participated in ... was selected for the most compliant and innovative solution. ...
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... ... 23, 2016 , ... Mosio, a leader in clinical research ... Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the ... tools, and strategies for clinical researchers. , “The landscape of how patients receive ...
Breaking Biology Technology: