Navigation Links
Mathematicians help to unlock brain function

Mathematicians from Queen Mary, University of London will bring researchers one-step closer to understanding how the structure of the brain relates to its function in two recently published studies.

Publishing in Physical Review Letters the researchers from the Complex Networks group at Queen Mary's School of Mathematics describe how different areas in the brain can have an association despite a lack of direct interaction.

The team, in collaboration with researchers in Barcelona, Pamplona and Paris, combined two different human brain networks - one that maps all the physical connections among brain areas known as the backbone network, and another that reports the activity of different regions as blood flow changes, known as the functional network. They showed that the presence of symmetrical neurons within the backbone network might be responsible for the synchronised activity of physically distant brain regions.

Lead author Vincenzo Nicosia, said "We don't fully understand how the human brain works. So far the focus has been more on the analysis of the function of single, localised regions. However, there isn't a complete model that brings the whole functionality of the brain together. Hopefully, our research will help neuroscientists to develop a more accurate map of the brain and investigate its functioning beyond single areas."

The research adds to the recent findings published in Proceedings of the National Academy of Sciences in which the QM researchers along with the Department of Psychiatry at University of Cambridge analysed the development of the brain of a small worm called Caenorhabditis elegans. In this paper, the team examined the number of links formed in the brain during the worm's lifespan, and observed an unexpected abrupt change in the pattern of growth, corresponding with the time of egg hatching.

"The research is important as it's the first time that a sharp transition in the growth of a neural network has ever been observed," added Dr Nicosia.

"Although we don't know which biological factors are responsible for the change in the growth pattern, we were able to reproduce the pattern using a simple economical model of synaptic formation. This result can pave the way to a deeper understanding of how neural networks grow in more complex organisms."

The Complex Networks group at Queen Mary is headed by Professor Vito Latora. Aside from theoretical research about the structure and function of complex networks, the group is working on the characterisation of multi-layer brain networks, aimed at reconciling and integrating different brain signals to produce a more informative picture of the human brain.


Contact: Neha Okhandiar
Queen Mary, University of London

Related biology news :

1. Mathematicians find solution to biological building block puzzle
2. Mathematicians tackle global issues
3. UC Riverside mathematicians recognized by American Mathematical Society
4. Artificial womb unlocks secrets of early embryo development
5. UCLA life scientists unlock mystery of how handedness arises
6. Rensselaer scientists unlock some key secrets of photosynthesis
7. Citizen science helps unlock European genetic heritage
8. Speed and power of X-ray laser helps unlock molecular mysteries
9. UC Santa Barbara scientists learn how to unlock the destiny of a cell: A gift for the tin man?
10. Could chloroplast breakthrough unlock key to controlling fruit ripening in crops?
11. Biologists unlocking the secrets of plant defenses, 1 piece at a time
Post Your Comments:
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
(Date:4/6/2017)... Forecasts by Product Type (EAC), ... End-Use (Transportation & Logistics, Government & Public Sector, Utilities ... Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation (BFSI), ... you looking for a definitive report on the $27.9bn ... ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... ... 2017 , ... At its national board meeting in North Carolina, ARCS® ... Departments of Physics and Astronomy, has been selected for membership in ARCS Alumni ... the 2015 Breakthrough Prize in Fundamental physics for the discovery of the accelerating expansion ...
(Date:10/9/2017)... San Antonio, Texas (PRWEB) , ... ... ... a new study published on October 5, 2017, in the medical journal, ... demonstrated equivalence with the gold standard, video EEG, in detecting generalized tonic-clonic ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first ... accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using their own ...
(Date:10/6/2017)... ... October 06, 2017 , ... The HealthTech Venture Network (HTVN) ... their fourth annual Conference where founders, investors, innovative practitioners and collaborators are invited ... competition showcasing early stage digital health and med tech companies. , This day-long ...
Breaking Biology Technology: