Navigation Links
Mathematical and biochemical 'design features' for cell decoding of pulses revealed

Every cell in the body has to sense and respond to chemicals such as hormones and neurotransmitters. They do so by relaying information from receptors to intracellular biochemical pathways that control cell behaviour, but relatively little is known about how cells decode the information in dynamic stimuli.

A team of researchers have found that differences in response kinetics working down the intracellular signalling pathway dictate differential sensitivity to different features of pulsatile hormone inputs.

The study funded by the BBSRC and published today [14 March] in the Journal of Biological Chemistry, explored mechanism underlying dynamic gonadotropin-releasing hormone (GnRH) signalling using live cell imaging and mathematical modelling.

The research team, led by Craig McArdle, Professor of Molecular Pharmacology at the University of Bristol's School of Clinical Sciences, in collaboration with the University of Exeter, focused on the ERK signalling pathway as this enzyme is activated by GnRH pulses and is essential for normal reproduction.

The neuropeptide hormone GnRH is secreted in pulses from neurons in the hypothalamus and controls secretion of two pituitary hormones, the LH and FSH that, in turn, control production of germ cells and sex steroids.

This system provides the interface between the brain and the reproductive system. It is absolutely essential for normal reproduction and is targeted therapeutically in assisted reproduction and in the treatment of hormone-dependent diseases, such as breast and prostate cancer.

The study found that for effects on gene expression the system is more sensitive to changes in GnRH receptor number than it is to changes in GnRH concentration, and is more sensitive to changes in GnRH interval than it is to changes in GnRH pulse width.

Professor Craig McArdle said: "The work revealed "design-features" of the system that make perfect sense in light of the biology, where GnRH receptor number and GnRH pulse interval vary, for example, through puberty and through the menstrual cycle.

"These features are relevant to numerous biological systems using pulsatile stimuli and suggest intriguing mechanisms for differential control of rapid and delayed responses with dynamic stimuli."

Professor Krasimira Tsaneva-Atanasova, Associate Professor of Mathematics at the University of Exeter and co-author on the paper said: "The effects of a signalling molecule can be fast or slow and the same signalling molecule will often elicit a rapid, transient response from a cell followed by a slower, long term change in cell behaviour.

"How fast and slow molecular pathways are modulated by pulsatile, or dynamic, inputs is particularly important for understanding GnRH signalling in physiologically relevant stimulation paradigms and identifying new tools that could be used for fertility control and treatment of hormone-dependent cancer."

Billions are spent every year on GnRH receptor ligands and the stimulation paradigm is absolutely crucial for therapeutic applications, but remarkably little is known about how the target cells and tissues decode GnRH dynamics.

The work is strengthened by the collaboration between the University's School of Clinical Sciences and School of Mathematics together with the Department of Maths at the University of Exeter, and the study illustrates the additional insight to be gained from such collaborative "maths-driven biology".


Contact: Joanne Fryer
University of Bristol

Related biology news :

1. Persistence or extinction: Through a mathematical lens
2. UC Riverside mathematicians recognized by American Mathematical Society
3. Mathematical butterflies provide insight into how insects fly
4. Springer will publish lecture series with the Mathematical Biosciences Institute
5. A mathematical perspective of seasonal variations in Lyme disease transmission
6. Genzyme/ACMG Foundation Genetics Training Award in Clinical Biochemical Genetics announced
7. Researchers identify biochemical functions for most of the human genome
8. Rice uses light to remotely trigger biochemical reactions
9. Biochemical mapping helps explain who will respond to antidepressants
10. 2 genetic wrongs make a biochemical right
11. Keck award enables Carnegie Mellon and Stanford to dramatically expand crowdsourced RNA design
Post Your Comments:
(Date:11/9/2015)... DUBLIN , Nov. 09, 2015 /PRNewswire/ ... announced the addition of the "Global ... to their offering. --> ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) ...
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig Venter ... titled, "DNA Synthesis and Biosecurity: Lessons Learned and Options ... of Health and Human Services guidance for synthetic biology ... --> --> ... has the potential to pose unique biosecurity threats. It ...
(Date:10/29/2015)... 29, 2015 Today, LifeBEAM , ... with 2XU, a global leader in technical performance ... hat with advanced bio-sensing technology. The hat will ... monitor key biometrics to improve overall training performance. ... two companies will bring together the most advanced technology, ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ALBANY, N.Y. , Nov. 30, 2015 /PRNewswire-USNewswire/ ... led by assistant chemistry professor Jan Halámek, is ... level.   --> ...   --> ... researchers at UAlbany have discovered a straightforward concept ...
(Date:11/30/2015)... , Nov. 30, 2015  Champions Oncology, Inc. (CSBR), ... services to personalize the development and use of oncology ... Executive Officer, will be presenting at the LD MICRO ... Pacific Standard Time (PST).  The conference, held at the ... Angeles, CA , will feature 200 small/micro-cap companies ...
(Date:11/30/2015)... , Nov. 30, 2015  AbbVie, is introducing ... that focuses on a daily routine for managing the ... their medication can affect the way the body absorbs ... to their a daily routine are important. The goal ... help patients better manage their hypothyroidism by establishing a ...
(Date:11/28/2015)... ... November 28, 2015 , ... • Jeon Jin Bio Corp, a ... rodent control solutions , Bird Free, an ... across all sensory modalities including visual, smell, taste and touch, enabling safe, effective avian ...
Breaking Biology Technology: