Navigation Links
Math models enhance current therapies for coronary heart disease

Coronary heart disease accounts for 18% of deaths in the United States every year. The disease results from a blockage of one or more arteries that supply blood to the heart muscle. This occurs as a result of a complex inflammatory condition called artherosclerosis, which leads to progressive buildup of fatty plaque near the surface of the arterial wall.

In a paper published last month in the SIAM Journal on Applied Mathematics, authors Sean McGinty, Sean McKee, Roger Wadsworth, and Christopher McCormick devise a mathematical model to improve currently-employed treatments of coronary heart disease (CHD).

"CHD remains the leading global cause of death, and mathematical modeling has a crucial role to play in the development of practical and effective treatments for this disease," says lead author Sean McGinty. "The use of mathematics allows often highly complex biological processes and treatment responses to be simplified and written in terms of equations which describe the key parameters of the system. The solution of these equations invariably provides invaluable insight and understanding that will be crucial to the development of better treatments for patients in the future."

The accumulation of plaque during CHD can result in chest pain, and ultimately, rupture of the artherosclerotic plaque, which causes blood clots blocking the artery and leading to heart attacks. A common method of treatment involves inserting a small metallic cage called a stent into the occluded artery to maintain blood flow.

However, upon insertion of a stent, the endotheliumthe thin layer of cells that lines the inner surface of the arterycan be severely damaged. The inflammatory response triggered as a result of this damage leads to excessive proliferation and migration of smooth muscle cells (cells in the arterial wall that are involved in physiology and pathology) leading to re-blocking of the artery. This is an important limitation in the use of stents. One way to combat this has been the use of stents that release drugs to inhibit the smooth muscle cell proliferation, which causes the occlusion. However, these drug-eluting stents have been associated with incomplete healing of the artery. Studies are now being conducted to improve their performance.

"Historically, stent manufacturers have predominantly used empirical methods to design their drug-eluting stents. Those stents which show promising results in laboratory and clinical trials are retained and those that do not are discarded," explains McGinty. "However, a natural question to ask is, what is the optimal design of a drug-eluting stent?"

The design of drug-eluting stents is severely limited by lack of understanding of the factors governing their drug release and distribution. "How much drug should be coated on the stent? What type of drug should be used?" McGinty questions. "All of these issues, of course, are inter-related. By developing models of drug release and the subsequent uptake into arterial tissue for current drug-eluting stents, and comparing the model solution with experimental results, we can begin to answer these questions."

The model proposed by the authors considers a stent coated with a thin layer of polymer containing a drug, which is embedded in the arterial wall, and a porous region of smooth muscle cells embedded in an extracellular matrix.

When the polymer region and the tissue region are considered as a coupled system, it can be shown under certain conditions that the drug release concentration satisfies a special kind of integral equation called the Volterra integral equation, which can be solved numerically. The drug concentration in the system is determined from the solution of this integral equation. This gives the mass of drug within cells, which is of primary interest to clinicians.

The simple one-dimensional model proposed in the paper provides analytical solutions to this complex problem. "While the simplified one and two-dimensional models that our group and others have recently developed have provided qualitative results and useful insights into this problem, ultimately three-dimensional models which capture the full complex geometry of the stent and the arterial wall may be required," McGinty says.

In a complex environment with pulsating blood flow, wound healing, cell proliferation and migration, and drug uptake and binding, the process of drug release from the stent may involve a multitude of factors, which could be best understood by three-dimensional models. "This is especially relevant when we want to consider the drug distribution in diseased arteries and when assessing the performance of the latest stents within complex geometries, where for instance, the diseased artery may bifurcate," says McGinty. "We are therefore currently investigating the potential benefits of moving to three-dimensional models."


Contact: Karthika Muthukumaraswamy
Society for Industrial and Applied Mathematics

Related biology news :

1. New book on mouse models of cancer from Cold Spring Harbor Laboratory Press
2. NYSCF and NIH create cell models of rare and undiagnosed diseases
3. Elevated levels of copper in amyloid plaques associated with neurodegeneration in mouse models of AD
4. New knowledge about permafrost improving climate models
5. New agent inhibits HCV replication in mouse models -- No resistance seen
6. Large animal models of Huntingtons disease offer new and promising research options
7. AACR news: Paragazole excels in preclinical models of triple-negative breast cancer
8. Cleverly designed vaccine blocks H5 avian influenza in models
9. Pig brain models provide insights into human cognitive development
10. Engineering control theory helps create dynamic brain models
11. Mentoring models to move minorities to majorities in STEM
Post Your Comments:
Related Image:
Math models enhance current therapies for coronary heart disease
(Date:10/29/2015)...  Connected health pioneer, Joseph C. Kvedar , ... health and wellness, and the business opportunities that arise ... Internet of Healthy Things . Long before health ... Dr. Kvedar, vice president, Connected Health, Partners HealthCare, was ... care from the hospital or doctor,s office into the ...
(Date:10/27/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), the ... has adopted the Synaptics ® ClearPad ® ... its newest flagship smartphones, the Nexus 5X by LG ... --> --> Synaptics works closely ... collaboration in the joint development of next generation technologies. ...
(Date:10/23/2015)... GOLETA, California , October 23, 2015 /PRNewswire/ ... SensoMotoric Instruments (SMI) announce a mobile plug and play ... during interactive real-world tasks SensoMotoric Instruments (SMI) ... their established wearable solutions for eye tracking and physiological ... captured with SMI Eye Tracking Glasses 2w ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2 nouvelles études permettent d , identifier ... souches bactériennes retrouvées dans la plaque dentaire des ... Ces recherches  ouvrent une nouvelle voie ... l,un des problèmes de santé les plus fréquemm ... --> 2 nouvelles études permettent d , ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing ... Aerospace Professionals (OPBAP) has been formalized with the signing of a Memorandum of ... with OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, ...
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf ... the 2016 USGA Green Section Award. Presented annually since 1961, the USGA Green Section ... her work with turfgrass. , Clarke, of Iselin, N.J., is an extension ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for Pharmaceutical Engineering ... premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place ... the largest number of attendees in more than a decade. , “The ...
Breaking Biology Technology: