Navigation Links
Math modeling integral to synthetic biology research

HOUSTON, April 4, 2014 A long-standing challenge in synthetic biology has been to create gene circuits that behave in predictable and robust ways. Mathematical modeling experts from the University of Houston (UH) collaborated with experimental biologists at Rice University to create a synthetic genetic clock that keeps accurate time across a range of temperatures. The findings were published in a recent issue of the Proceedings of the National Academy of Sciences.

"Synthetic gene circuits are often fragile, and environmental changes frequently alter their behavior," said Kreimir Josić, professor of mathematics in UH's College of Natural Sciences and Mathematics. "Our work focused on engineering a gene circuit not affected by temperature change."

Synthetic biology is a field in which naturally occurring biological systems are redesigned for various purposes, such as producing biofuel. The UH and Rice research targeted the bacterium E. coli.

"In E. coli and other bacteria, if you increase the temperature by about 10 degrees the rate of biochemical reactions will double and therefore genetic clocks will speed up," Josić said. "We wanted to create a synthetic gene clock that compensates for this increase in tempo and keeps accurate time, regardless of temperature."

The UH team, led by Josić and William Ott, an assistant professor of mathematics, collaborated with the lab of Matthew Bennett, assistant professor of biochemistry and cell biology at Rice. Josić, Bennett and Ott have been working together on various research projects for three years. The team also included UH postdoctoral fellow Chinmaya Gupta.

According to Bennett, the ability to keep cellular reactions accurately timed, regardless of temperature, may be valuable to synthetic biologists who wish to reprogram cellular regulatory mechanisms for biotechnology.

The work involved engineering a gene within the clock onto a plasmid, a little piece of DNA that is inserted into E. coli. A mutation in the gene had the effect of slowing down the clock as temperature increased.

UH researchers created a mathematical model to assess the various design features that would be needed in the plasmid to counteract temperature change. Gupta showed that the model captured the mechanisms essential to compensate for the temperature-dependent changes in reaction rates.

The computational modeling confirmed that a single mutation could result in a genetic clock with a stable period across a large range of temperatures an observation confirmed by experiments in the Bennett lab. Josić's team then confirmed the predictions of the models using real data.

"Having a mechanistic model that allows you to determine which features are important and which can be ignored for a genetic circuit to behave in a particular way allows you to more efficiently create circuits with desired properties," Gupta said. "It allows you to concentrate on the most important factors necessary in the design."

"Throughout this work, we used mathematical models to find out what is important in designing robust synthetic gene circuits," Josić said. "Computational and mathematical tools are essential in all types of engineering. Why not for biological engineering?"

Josić, Ott and Bennett's research is funded by the National Institutes of Health through the joint National Science Foundation/National Institute of General Medical Sciences Mathematical Biology Program.


Contact: Lisa Merkl
University of Houston

Related biology news :

1. 3-D RNA modeling opens scientific doors
2. Patel recognized with NSF Career Award for computer-modeling research on cell membranes
3. 50 Years of Watershed Modeling -- Past, Present and Future
4. Geosphere: How geology, technology, modeling, and mapping see into Earths past and present
5. Modeling metastasis
6. Research finds heart remodeling rapidly follows cardiac injury
7. New modeling approach transforms imaging technologies
8. Computer modeling reveals how surprisingly potent hepatitis C drug works
9. Color in fossil insects, diamonds from the ancient ocean floor and modeling the worlds largest rivers
10. Computer modeling technique goes viral at Brandeis
11. Sugar-burning in the adult human brain is associated with continued growth, and remodeling
Post Your Comments:
(Date:11/9/2015)... ) ... "Global Law Enforcement Biometrics Market 2015-2019" ... ) has announced the addition of ... 2015-2019" report to their offering. ... ) has announced the addition of the ...
(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
(Date:10/29/2015)... Minn. , Oct. 29, 2015   MedNet ... supports the entire spectrum of clinical research, is pleased ... Minnesota High Tech Association (MHTA) as one of only ... in the "Software – Small and Growing" category. The Tekne ... individuals who have shown superior technology innovation and leadership. ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model ... Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View ... years. Many AMA members have embraced this type of racing and several new model ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... ... and the environment are paramount. Insertion points for in-line sensors can represent a ... developed the InTrac 781/784 series of retractable sensor housings , which are ...
Breaking Biology Technology: