Navigation Links
Maternal, paternal genes' tug-of-war may last well into childhood

CAMBRIDGE, Mass., July 28, 2009 -- An analysis of rare genetic disorders in which children lack some genes from one parent suggests that maternal and paternal genes engage in a subtle tug-of-war well into childhood, and possibly as late as the onset of puberty.

This striking new variety of intra-family conflict, described this week in the Proceedings of the National Academy of Sciences, is the latest wrinkle in the two-decades-old theory known as genomic imprinting, which holds that each parent contributes genes that seek to nudge his or her children's development in a direction most favorable, and least costly, to that parent.

"Compared to other primates, human babies are weaned quite early, yet take a very long time to reach full nutritional independence and sexual maturity," says author David Haig, George Putnam Professor of Organismic and Evolutionary Biology in Harvard University's Faculty of Arts and Sciences. "Human mothers are also unusual among primates in that they often care for more than one child at a time. Evidence from disorders of genomic imprinting suggests that maternal and paternal genes may skirmish over the pace of human development."

Previous research has offered evidence of a genetic struggle for supremacy only during fetal development: In the womb, some genes of paternal origin have been shown to promote increased demands on mothers, leading to fetal overgrowth, while genes of maternal origin tend to have the opposite effect. This new work suggests maternal and paternal genes continue to engage in internal genetic conflict past childbirth.

"This analysis suggests that human life history, and especially humans' unusual extended childhood, may reflect a compromise between what's best for mothers, fathers, and the offspring themselves," Haig says.

Haig delved into clinical case reports on patients with four rare genetic disorders. He found evidence that children with disorders characterized by dominance of some maternal genes -- Silver-Russell syndrome, Prader-Willi syndrome, and Temple syndrome -- place fewer demands on their mothers' resources.

For example, newborns with all three disorders display a weak desire to nurse, and slower childhood growth in general. Many also show early onset of puberty, which often marks a point at which children become less dependent on their mothers' sustenance.

Conversely, babies with Beckwith-Wiedemann syndrome, in which some maternally derived genes are suppressed and paternal genes dominate, are born heavy with particularly large tongues. These individuals usually end up being tall, owing to their rapid growth both in the womb and as young children. They have a high frequency of childhood cancers.

"Clinical data from imprinting disorders suggest paternally-expressed genes promote, and maternally-expressed genes inhibit, childhood growth," Haig writes.

Haig adds that further longitudinal study of feeding and development in individuals with Silver-Russell syndrome, Prader-Willi syndrome, Temple syndrome, and Beckwith-Wiedemann syndrome is needed to more fully understand the role of genomic imprinting in such disorders.


Contact: Steve Bradt
Harvard University

Related biology news :

1. Gene regulation, not just genes, is what sets humans apart
2. Interaction of just 2 genes governs coloration patterns in mice
3. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
4. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
5. Smoking turns on genes -- permanently
6. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
7. Hebrew SeniorLife researchers search for aging, osteoporosis genes
8. UT Southwestern researchers identify hundreds of genes controlling female fertility
9. Genes and environment grant funds close look at nature-nurture overlap in common diseases
10. Jumping genes could make for safer gene delivery system
11. Genes from the father facilitate the formation of new species
Post Your Comments:
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... RESTON, Va. , Oct. 29, 2015 ... announced today that it has released a new version ... Daon customers in North America ... gains. IdentityX v4.0 also includes a FIDO UAF ... customers are already preparing to activate FIDO features. These ...
(Date:10/29/2015)... , Oct. 29, 2015 Today, ... a partnership with 2XU, a global leader in ... a smart hat with advanced bio-sensing technology. The ... athletes to monitor key biometrics to improve overall ... partnership, the two companies will bring together the most ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... 30, 2015 /PRNewswire/ - Zenith Epigenetics Corp. ("Zenith" or the ... C.W. Wong to its Board of Directors to replace ... with a wealth of experience as co-founder of Resverlogix, with ... --> --> Dr. Wong remarked, ... of directors. Zenith,s long standing expertise in epigenetics and the ...
(Date:11/30/2015)... -- TapImmune, Inc. (TPIV), a clinical-stage ... and gene-based immunotherapeutics and vaccines for the treatment of ... presenting at the 8 th Annual LD Micro ... PT. Dr. John N. Bonfiglio a TapImmune ... presentation and will join TapImmune management in meeting with ...
(Date:11/30/2015)... 2015  Northwest Biotherapeutics (NASDAQ: NWBO ) ("NW ... therapies for solid tumor cancers, announced today that the ... and the Company welcomes Neil Woodford,s call ... anonymous internet report on NW Bio.  The Company,s Board ... Powers stated, "We agree with Mr. Woodford that, ...
(Date:11/27/2015)... , ... November 27, 2015 , ... ... that includes over 2,000 technical presentations offered in symposia, oral sessions, workshops, ... applied spectroscopy, covers a wide range of applications such as, but not limited ...
Breaking Biology Technology: