Navigation Links
Maternal, paternal genes' tug-of-war may last well into childhood
Date:7/28/2009

CAMBRIDGE, Mass., July 28, 2009 -- An analysis of rare genetic disorders in which children lack some genes from one parent suggests that maternal and paternal genes engage in a subtle tug-of-war well into childhood, and possibly as late as the onset of puberty.

This striking new variety of intra-family conflict, described this week in the Proceedings of the National Academy of Sciences, is the latest wrinkle in the two-decades-old theory known as genomic imprinting, which holds that each parent contributes genes that seek to nudge his or her children's development in a direction most favorable, and least costly, to that parent.

"Compared to other primates, human babies are weaned quite early, yet take a very long time to reach full nutritional independence and sexual maturity," says author David Haig, George Putnam Professor of Organismic and Evolutionary Biology in Harvard University's Faculty of Arts and Sciences. "Human mothers are also unusual among primates in that they often care for more than one child at a time. Evidence from disorders of genomic imprinting suggests that maternal and paternal genes may skirmish over the pace of human development."

Previous research has offered evidence of a genetic struggle for supremacy only during fetal development: In the womb, some genes of paternal origin have been shown to promote increased demands on mothers, leading to fetal overgrowth, while genes of maternal origin tend to have the opposite effect. This new work suggests maternal and paternal genes continue to engage in internal genetic conflict past childbirth.

"This analysis suggests that human life history, and especially humans' unusual extended childhood, may reflect a compromise between what's best for mothers, fathers, and the offspring themselves," Haig says.

Haig delved into clinical case reports on patients with four rare genetic disorders. He found evidence that children with disorders characterized by dominance of some maternal genes -- Silver-Russell syndrome, Prader-Willi syndrome, and Temple syndrome -- place fewer demands on their mothers' resources.

For example, newborns with all three disorders display a weak desire to nurse, and slower childhood growth in general. Many also show early onset of puberty, which often marks a point at which children become less dependent on their mothers' sustenance.

Conversely, babies with Beckwith-Wiedemann syndrome, in which some maternally derived genes are suppressed and paternal genes dominate, are born heavy with particularly large tongues. These individuals usually end up being tall, owing to their rapid growth both in the womb and as young children. They have a high frequency of childhood cancers.

"Clinical data from imprinting disorders suggest paternally-expressed genes promote, and maternally-expressed genes inhibit, childhood growth," Haig writes.

Haig adds that further longitudinal study of feeding and development in individuals with Silver-Russell syndrome, Prader-Willi syndrome, Temple syndrome, and Beckwith-Wiedemann syndrome is needed to more fully understand the role of genomic imprinting in such disorders.


'/>"/>

Contact: Steve Bradt
steve_bradt@harvard.edu
617-496-8070
Harvard University
Source:Eurekalert

Related biology news :

1. Gene regulation, not just genes, is what sets humans apart
2. Interaction of just 2 genes governs coloration patterns in mice
3. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
4. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
5. Smoking turns on genes -- permanently
6. Genes, Environment and Health Initiative invests in genetic studies, environmental monitoring
7. Hebrew SeniorLife researchers search for aging, osteoporosis genes
8. UT Southwestern researchers identify hundreds of genes controlling female fertility
9. Genes and environment grant funds close look at nature-nurture overlap in common diseases
10. Jumping genes could make for safer gene delivery system
11. Genes from the father facilitate the formation of new species
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
(Date:3/30/2017)... YORK , March 30, 2017 Trends, ... type (physiological and behavioral), by technology (fingerprint, AFIS, iris ... voice recognition, and others), by end use industry (government ... and immigration, financial and banking, and others), and by ... Europe , Asia Pacific , ...
(Date:3/24/2017)... 24, 2017 Research and Markets has announced ... Analysis & Trends - Industry Forecast to 2025" report to ... The ... a CAGR of around 15.1% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
Breaking Biology News(10 mins):
(Date:7/17/2017)... ... July 17, 2017 , ... DuPont Pioneer today ... website (openinnovation.pioneer.com) dedicated to connecting third-party innovators with DuPont Pioneer scientists ... breeding, enabling technologies, biologicals and digital solutions. , “DuPont Pioneer is building on ...
(Date:7/15/2017)... NY (PRWEB) , ... July 15, 2017 , ... ... over 5 years. During this time, the people at FFS have learned that ... their customers, engineers at FFS are able to launch new products to meet the ...
(Date:7/14/2017)... ... July 13, 2017 , ... LGC ... kit has received US FDA 510 (k) clearance for use on Siemens Sysmex® ... D-Dimer. Each VALIDATE® D-Dimer kit, prepared using the CLSI EP06-A “equal delta” sample ...
(Date:7/13/2017)... (PRWEB) , ... July 13, 2017 , ... ... URAC accreditation in Specialty Pharmacy. URAC is the independent leader in promoting healthcare ... demonstrated a comprehensive commitment to quality care, improved processes and better patient outcomes. ...
Breaking Biology Technology: