Navigation Links
'Master molecule' may improve stem cell treatment of heart attacks

Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.

Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. For reasons not completely understood, however, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.

In a study published in the June 5 online edition of the journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.

"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.

The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."

Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient.

Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.

Levchenko's team wanted to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.

During their research, the Johns Hopkins team members wondered whether changing the surface where the harvested stem cells grew would affect the cells' development. The researchers were surprised to find that growing the cells on a surface whose rigidity resembled that of heart tissue caused the stem cells to grow faster and to form blood vessels. A cell population boom occurred far less often in the stem cells grown in the glass or plastic dishes typically used in biology labs. This result also suggested why formation of cardiac scar tissue, a structure with very different rigidity, can inhibit stem cells naturally residing there from regenerating the heart.

Looking further into this stem cell differentiation, the Johns Hopkins researchers found that the increased cell growth occurred when there was a decrease in the presence of the protein p190RhoGAP.

"It was the kind of master regulator of this process," Levchenko said. "And an even bigger surprise was that if we directly forced this molecule to disappear, we no longer needed the special heart-matched surfaces. When the master regulator was missing, the stem cells started to form blood vessels, even on glass."

A final surprise occurred when the team decided to increase the presence of p190RhoGAP, instead of making it disappear.

"The stem cells started to turn into cardiac muscle tissue, instead of blood vessels," Levchenko said. "This told us that this amazing molecule was the master regulator not only of the blood vessel development, but that it also determined whether cardiac muscles and blood vessels would develop from the same cells, even though these types of tissue are quite different."

But would these lab discoveries make a difference in the treatment of living beings? To find out, the researchers, working on the heart-matching surfaces they had designed, limited the production of p190RhoGAP within the heart cells. The cells that possessed less of this protein integrated more smoothly into an animal's blood vessel networks in the aftermath of a heart attack. In addition, more of these transplanted heart cells survived, compared to what had occurred in earlier cell-growing procedures.

Kshitiz said that the special heart-like surface on which the cardiac stem cells were grown triggers regulation of the master molecule, which then steers the next steps.

"This single protein can control the cells' shape, how fast they divide, how they become blood vessel cells and how they start to form a blood vessel network," he said. "How it performed all of these myriad tasks that require hundreds of other proteins to act in a complex interplay was an interesting mystery to address, and one that rarely occurs in biology. It was like a molecular symphony being played in time, with each beat placed right at the moment before another melody has to start."


Contact: Phil Sneiderman
Johns Hopkins University

Related biology news :

1. Discovery of a molecule that initiates maturation of mammalian eggs can lead to more IVF pregnancies
2. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
3. Molecule found that inhibits estrogen, key risk factor for endometrial and breast cancers
4. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
5. UNH researchers find African farmers need better climate change data to improve farming practices
6. Improved Authentication and Confidentiality Protection. ICAP Patent Brokerage Announces for Auction Important Patents in Data Encryption and Document Security
7. Test to improve peanut allergy diagnosis
8. New discoveries about brain-hand connection sought to improve therapies, treatments, prosthetics
9. Some improved cookstoves may emit more pollution than traditional mud cookstoves
10. Strip-till improves soybean yield
11. ORNL process improves catalytic rate of enzymes by 3,000 percent
Post Your Comments:
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
(Date:3/22/2016)... , March 22, 2016 ... report "Electronic Sensors Market for Consumer Industry by Type ... Others), Application (Communication & IT, Entertainment, Home ... Global Forecast to 2022", published by MarketsandMarkets, ... expected to reach USD 26.76 Billion by ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm ... Mold) microbial test has received AOAC Research Institute approval 061601. , “This is ... last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The ...
Breaking Biology Technology: