Navigation Links
Massive microRNA scan uncovers leads to treating muscle degeneration

Researchers have discovered the first microRNAs tiny bits of code that regulate gene activity linked to each of 10 major degenerative muscular disorders, opening doors to new treatments and a better biological understanding of these debilitating, poorly understood, often untreatable diseases. The study, to be published online this week by the Proceedings of the National Academy of Sciences, was led by Iris Eisenberg, PhD, of the Program in Genomics at Childrens Hospital Boston. Louis Kunkel, PhD, director of the Program in Genomics and an investigator with the Howard Hughes Medical Institute, was senior investigator.

The disorders include the muscular dystrophies (Duchenne muscular dystrophy, Becker muscular dystrophy, limb girdle muscular dystrophies, Miyoshi myopathy, and fascioscapulohumeral muscular dystrophy); the congenital myopathies (nemaline myopathy); and the inflammatory myopathies (polymyositis, dermatomyositis, and inclusion body myositis). While past studies have linked them with an increasing number of genes, it's still largely unknown how these genes cause muscle weakness and wasting, and, more importantly, how to translate the discoveries into treatments.

For instance, most muscular dystrophies begin with a known mutation in a master gene, leading to damaged or absent proteins in muscle cells. In Duchenne and Becker muscular dystrophies, the absent protein is dystrophin, as Kunkel himself discovered in 1987. Its absence causes muscle tissue to weaken and rupture, and the tissue becomes progressively nonfunctional through inflammatory attacks and other damaging events that arent fully understood.

The initial mutations do not explain why patients are losing their muscle so fast, says Eisenberg. There are still many unknown genes involved in these processes, as well as in the inflammatory processes taking place in the damaged muscle tissue.

She and Kunkel believe microRNAs may help provide the missing genetic links. Their team analyzed muscle tissue from patients with each of the ten muscular disorders, discovering that 185 microRNAs are either too abundant or too scarce in wasting muscle, compared with healthy muscle.

Discovered in humans only in the past decade, microRNAs are already known to regulate major processes in the body. Therefore, Eisenberg believes microRNAs may be involved in orchestrating the tissue death, inflammatory response and other major degenerative processes in the affected muscle tissue. The researchers used bioinformatics to uncover a list of genes the microRNAs may act on, and now plan to find which microRNAs and genes actually underlie these processes.

The findings raise the possibility of slowing muscle loss by targeting the microRNAs that control these cascades of damaging events. This approach is more efficient than targeting individual genes.

The team also defined the abnormal microRNA signatures that correspond to each of the ten wasting diseases. They hope these will shed light on the genes and disease mechanisms involved in the most poorly understood and least treatable of the degenerative disorders, such as inclusion body myositis.

At this point, its very theoretical, but its possible, says Eisenberg.


Contact: James Newton
Children's Hospital Boston

Related biology news :

1. New plant DNA libraries provides massive boost to worlds plant researchers
2. Underlying cause of massive pinyon pine die-off revealed
3. Massive duplication of genes may solve Darwins abominable mystery about flowering plants
4. PNAS study reveals why organs fail following massive trauma
5. Massive coral death attributed to earthquake
6. Massive herds of animals found to still exist in Southern Sudan
7. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
8. Cooperation is key—a new way of looking at MicroRNA and how it controls gene expression
9. NYU, Rockefeller researchers find complexity of regulation by microRNA genes
10. MicroRNAs play a big part in gene regulation - and evolution
11. Molecular steps involved in the creation of gene-silencing microRNAs identified
Post Your Comments:
(Date:11/20/2015)... 20, 2015 NXTD ) ("NXT-ID" ... the growing mobile commerce market and creator of the ... , was recently interviewed on The RedChip Money ... this weekend on Bloomberg Europe , Bloomberg Asia, ... --> NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:11/19/2015)... Nov. 19, 2015  Based on its in-depth analysis ... recognizes BIO-key with the 2015 Global Frost & Sullivan ... & Sullivan presents this award to the company that ... the needs of the market it serves. The award ... and expands on customer base demands, the overall impact ...
(Date:11/19/2015)... 2015  Although some 350 companies are actively involved ... few companies, according to Kalorama Information. These include Roche Diagnostics, ... market share of the 6.1 billion-dollar molecular testing market, ... for Molecular Diagnostic s .    ... controlled by one company and only a handful of ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... LOS ANGELES and HOLLISTON, Mass. ... Regenerative Technology, Inc. (Nasdaq: HART ), a biotechnology ... announced that CEO Jim McGorry will present ... Tuesday, December 1, 2015 at 2:30 p.m. PT. The ... (link below) for 30 days. Management will also be ...
(Date:11/25/2015)... DIEGO , Nov. 25, 2015 Orexigen® ... management will participate in a fireside chat discussion at ... New York . The discussion is scheduled ... .  A replay will be ... Media Contact:McDavid Stilwell  , Julie NormartVP, Corporate Communications ...
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf Association (USGA) today announced ... Section Award. Presented annually since 1961, the USGA Green Section Award recognizes an individual’s ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is an ... is bound to proteins, copper is also toxic to cells. With a $1.3 ... Institute (WPI) will conduct a systematic study of copper in the bacteria Pseudomonas ...
Breaking Biology Technology: