Navigation Links
Marine tubeworms need nudge to transition from larvae state

A common problem at Pearl Harbor, biofouling affects harbors around the world. It's the process by which barnacles, muscles, oysters, and tubeworms accumulate on the bottom of boats and other surfaces. Now researchers at the University of Hawai'i at Mānoa's Kewalo Marine Laboratory have discovered a biological trigger behind the buildup.

Crusty marine creatures begin life as miniscule larvae floating in the open ocean, says Michael Hadfield, a Professor of Biology. But before the larvae settle on a surface and start to grow, they need a bacterial cue to initiate metamorphosis.

"The critical issue is how they find the right spot to make that transformation: the right place where food will be available and where there will be others of the species with which to reproduce," Hadfield said. "The success of the species depends on the larvae settling in on exactly the right spot."

Or the wrong spot, depending on who you're talking to. The U.S. Navy, commercial cargo shippers, and many private boat owners would like to find a way to stop biofouling before it starts. A surface layer of barnacles or other marine life slows down boats and increases the amount of fuel it takes to move them through the water.

Biofouling begins when floating larvae come into contact with a biofilm formed by a microbe that coats steel, plastic, and glass surfaces in calm ocean waters. Now new research from UH Mānoa and the California Institute of Technology has isolated the genetic underpinnings of this novel form of bacterium-animal interaction.

The results were published in the January 9, 2014, issue of the journal Science, in an article titled, "Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures." Collaborator Nicholas Shikuma, the first author on this paper, studied with Hadfield and earned his masters degree at UH Mānoa. He is now a postdoctoral scholar at Caltech.

Hadfield and his team have been studying the marine tubeworm H. elegans since 1990. In his laboratory, researchers cultivated strains of bacteria to identify the specific genes that are involved with causing the H. elegans larvae to abandon their free-swimming ways and "recruit" out of the ocean to begin a new life phase affixed onto harder surfaces. Interestingly, the researchers found that these particular bacteria, Pseudoalteromonas luteoviolacea, produce arrays of phage tail-like structures that are similar to those produced for puncturing the cell membranes of competing bacteria. The phage tail-like structures appear to play a role in the bacterium-animal interaction as well, but researchers are still analyzing the specifics.

This bacteria's not all bad, though. While a new layer of marine life on a previously pristine boat hull might be a negative for a boat owner, the same bacteria-driven process is a positive for repairing and restoring damaged reefs, for example. And greater knowledge of the forces that drive larval recruitment could also be a boon for oyster and clam growers in the mariculture industry, who rely on very similar processes to seed their stocks.

"Larval settlement is responsible for creating new communities on new surfaces," Hadfield said. "But it's also essential to continue those communities as old organisms dieto recruit new ones there to replace them. In the ecology of the sea, it's one of the most important processes, and the more we understand about it, the better we can help it go."

"Knowledge like this will help us to develop methods that target the process itself," Hadfield said.


Contact: Talia S. Ogliore
University of Hawaii at Manoa

Related biology news :

1. Increase in Arctic shipping poses risk to marine mammals
2. Marine Protected Areas are keeping turtles safe
3. Size matters: Large Marine Protected Areas work for dolphins
4. New iPad, iPhone app helps mariners avoid endangered right whales
5. First mass extinction linked to marine anoxia
6. Marine scientists urge government to reassess oil spill response
7. NOAA discovers way to detect low-level exposure to seafood toxin in marine animals
8. SeaSketch, the next generation of UCSBs MarineMap program, will aid marine spatial planning
9. ORNL protein analysis investigates marine worm community
10. Deep sea animals stowaway on submarines and reach new territory
11. DNA evidence shows that marine reserves help to sustain fisheries
Post Your Comments:
Related Image:
Marine tubeworms need nudge to transition from larvae state
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
(Date:10/27/2015)... 2015 In the present market scenario, security ... various industry verticals such as banking, healthcare, defense, electronic ... demand for secure & simplified access control and growing ... hacking of bank accounts, misuse of users, , and ... PC,s, laptops, and smartphones are expected to provide potential ...
(Date:10/26/2015)... 26, 2015  Delta ID Inc., a company focused ... and PC devices, announced its ActiveIRIS® technology powers the ... F-02H launched by NTT DOCOMO, INC in ... second smartphone to include iris recognition technology, after a ... F-04G in May 2015, world,s first smartphone to have ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... --> --> ... by Transparency Market Research, the global non-invasive prenatal testing ... 17.5% during the period between 2014 and 2022. The ... Analysis, Size, Volume, Share, Growth, Trends and Forecast 2014 ... to reach a valuation of US$2.38 bn by 2022. ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
(Date:11/24/2015)... Switzerland (PRWEB) , ... November 24, 2015 , ... ... plant and the environment are paramount. Insertion points for in-line sensors can represent ... has developed the InTrac 781/784 series of retractable sensor housings , which ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
Breaking Biology Technology: