Navigation Links
Maps of Miscanthus genome offer insight into grass evolution
Date:5/15/2012

CHAMPAIGN, Ill. Miscanthus grasses are used in gardens, burned for heat and energy, and converted into liquid fuels. They also belong to a prominent grass family that includes corn, sorghum and sugarcane. Two new, independently produced chromosome maps of Miscanthus sinensis (an ornamental that likely is a parent of Miscanthus giganteus, a biofuels crop) are a first step toward sequencing the M. sinensis genome. The studies reveal how a new plant species with distinctive traits can arise as a result of chromosome duplications and fusions.

The two studies were published this year: The first, led by the energy crop company Ceres, appeared in the journal PLoS ONE; the second, from a team led by researchers at the University of Illinois, is in the journal BMC Genomics. The data, materials, methods and genetic markers used in the latter study are available to the public for further research.

Before this work, scientists knew that M. sinensis had a base set of 19 chromosomes and was closely related to sorghum, which has a base set of 10. (Humans have a base set of 23). But without a map and sequence of the Miscanthus genome, researchers who hope to maximize yields or discover which genes give Miscanthus its desirable traits are working in the dark, said Stephen Moose, a University of Illinois crop sciences professor and Energy Biosciences Institute program leader who led the BMC Genomics study.

Moose and his colleagues used information gleaned from the sugarcane genome to develop hundreds of genetic markers to target specific regions of the M. sinensis genome. Then they crossed two M. sinensis plants and grew 221 offspring in the lab. By comparing how the genetic markers from each parent were sorted in the offspring, the team reconstructed 19 "linkage groups" corresponding to the 19 chromosomes of Miscanthus. This rough map of the chromosomes is a first step toward a Miscanthus genome, Moose said.

The researchers also used the sorghum genome as a comparative reference. Their analysis indicated thatM. sinensis arose as a result of a duplication of the sorghum genome, with a later fusion of some chromosome parts.

"Some plants will duplicate their genomes and then there's some sorting that goes on," Moose said. "Sometimes whole chromosomes are lost and sometimes there are fusions." Once there are two copies of each chromosome in a base set, each will proceed along its own evolutionary trajectory. "Often what will happen is even though there are two (versions of the same chromosome), one of them will start to deteriorate over time," Moose said. "Some positions and some genes will win out over the others."

Genome duplications may undermine the viability of a plant or give it an advantage. One immediate advantage of doubling, tripling or otherwise duplicating the genome is that it increases the size of the plant, or of certain plant parts, Moose said.

"Humans have selected for these traits," he said. "Strawberries, for example, are octoploids; they have eight chromosome sets. Sugarcane has eight sets, and it's bigger (than its wild cousins)."

Moose and his colleagues were surprised to find a high degree of similarity between the Miscanthus and sorghum genomes.

"I would say that for about 90 percent of the Miscanthus markers, their chromosomal order corresponds to what is known for sorghum," he said.

The new findings and the eventual publication of the Miscanthus genome will help scientists understand the evolution of grasses and the genetic mechanisms that give them some of their useful traits, such as cold tolerance, Moose said.

The BMC Genomics team also included researchers from the University of California, Berkeley; the Polish Academy of Sciences; the department of plant biology at the University of Illinois; the Department of Energy Joint Genome Institute; and the National Institute of Horticultural and Herbal Science, in South Korea. Moose is an affiliate of the Institute for Genomic Biology at Illinois.


'/>"/>

Contact: Diana Yates
diya@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. Miscanthus, a biofuels crop, can host western corn rootworm
2. New Miscanthus hybrid discovery in Japan could open doors for biofuel industry
3. Miscanthus has a fighting chance against weeds
4. Miscanthus adapts
5. Findings prove Miscanthus x giganteus has great potential as an alternative energy source
6. NC State researchers get to root of parasite genome
7. Worm genome offers clues to evolution of parasitism
8. Complete Genomics launches, becomes worlds first large-scale human genome sequencing company
9. Diatom genome helps explain success in trapping excess carbon in oceans
10. Washington University scientists first to sequence genome of cancer patient
11. Research consortium to sequence turkey genome
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Maps of Miscanthus genome offer insight into grass evolution
(Date:4/13/2017)... SANTA MONICA, Calif. , April 13, 2017 /PRNewswire/ ... New York will feature emerging and ... Innovation Summits. Both Innovation Summits will run alongside the ... variety of speaker sessions, panels and demonstrations focused on ... east coast,s largest advanced design and manufacturing event will ...
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
Breaking Biology News(10 mins):
(Date:4/25/2017)... (PRWEB) , ... April 25, 2017 , ... ... L3 Healthcare, is pleased to announce the company is now a certified iMedNet ... The iMedNet software certification enables the company’s clinical research team to build, customize ...
(Date:4/25/2017)... ... April 25, 2017 , ... ... , Covalent’s Analytical Services unit provides high-quality data to clients, both ... 24 hours of receipt. There are no price premiums, and customers are welcome ...
(Date:4/24/2017)... April 24, 2017  Dante Labs announced today the offer ... 850 (ca. $900). While American individuals have been able to ... Europeans can access WGS below EUR 1,000. The ... leveraging genetic information to make informed decisions about disease monitoring, ... ...
(Date:4/21/2017)... , ... April 21, 2017 , ... ... Webster Bank, today announced first round funding to three startups through the UConn ... financial support to new business startups affiliated with UConn. , The UConn Innovation ...
Breaking Biology Technology: