Navigation Links
Mapping the optimal route between two quantum states

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal or "most likely" path, but it is not as easy to predict the path or track it experimentally as a straight-line between two points would be in our everyday, classical world.

In a new paper featured on the July 30 cover of Nature, scientists from the Institute for Quantum Studies at Chapman University, the University of Rochester, University of California at Berkeley, and Washington University in St. Louis have shown that it is possible to track these quantum trajectories and compare them to a recently developed theory for predicting the most likely path a system will take between two states.

Andrew N. Jordan, professor of physics at the University of Rochester and member of Chapman's Institute for Quantum Studies, is one of the authors of the paper. His group had developed this new theory in an earlier paper. The results published this week show good agreement between theory and experiment.

For their experiment, the Berkeley and Washington University teams devised a superconducting qubit with exceptional coherence properties, permitting it to remain in a quantum superposition during the continuous monitoring. The experiment actually exploited the fact that any measurement will perturb a quantum system. This means that the optimal path will come about as a result of the continuous measurement and how the system is being driven from one quantum state to another.

Kater Murch, co-author and assistant professor at Washington University in St. Louis, explained that a key part of the experiment was being able to measure each of these trajectories while the system was changing, something that had not been possible until now. This was made possible by using a breakthrough called "weak measurements" introduced by Chapman University's Yakir Aharonov.

"Everybody knows that if your only tool is a hammer, then you tend to treat everything as if it were a nail" says Prof. Jeff Tollaksen, Director of Chapman's Institute for Quantum Studies. "But a whole new world opens up when we make weak measurements."

Jordan compares the experiment to watching butterflies make their way one by one from a cage to nearby trees.

"Each butterfly's path is like a single run of the experiment," said Jordan. "They are all starting from the same cage, the initial state, and ending in one of the trees, each being a different end state."

By watching the quantum equivalent of a million butterflies make the journey from cage to tree, the researchers were in effect able to predict the most likely path a butterfly took by observing which tree it landed on (known as post-selection in quantum physics measurements), despite the presence of a wind, or any disturbance that affects how it flies (which is similar to the effect measuring has on the system).

"The experiment demonstrates that for any choice of final quantum state, the most likely or 'optimal path' connecting them in a given time can be found and predicted," said Jordan. "This verifies the theory and opens the way for active quantum control techniques."

He explained that only if you know the most likely path is it possible to set up the system to be in the desired state at a specific time.


Contact: Sheri Ledbetter
Chapman University

Related biology news :

1. Speeding up drug discovery with rapid 3-D mapping of proteins
2. Beyond base pairs: Mapping the functional genome
3. Road-mapping the Asian brain
4. Geosphere: How geology, technology, modeling, and mapping see into Earths past and present
5. Physics and math shed new light on biology by mapping the landscape of evolution
6. Influenza research: Can dynamic mapping reveal clues about seasonality?
7. USDA scientists collaborate with global researchers to advance the mapping of the barley genome
8. Carnegie debuts revolutionary biosphere mapping capability at AGU
9. Mapping effort charts restoration tack for Great Lakes
10. Brain Activity Mapping Project aims to understand the brain
11. Mapping of cancer cell fuel pumps paves the way for new drugs
Post Your Comments:
Related Image:
Mapping the optimal route between two quantum states
(Date:11/19/2015)... 2015  Although some 350 companies are actively involved ... few companies, according to Kalorama Information. These include Roche Diagnostics, ... market share of the 6.1 billion-dollar molecular testing market, ... for Molecular Diagnostic s .    ... controlled by one company and only a handful of ...
(Date:11/18/2015)... 2015 --> ... market report titled  Gesture Recognition Market - Global Industry ... 2021. According to the report, the global gesture recognition market was valued ... reach US$29.1 bn by 2021, at a CAGR of ... America dominated the global gesture recognition market ...
(Date:11/17/2015)... 17, 2015 Paris ... --> Paris , qui s,est ... DERMALOG, le leader de l,innovation biométrique, a inventé le ... et empreintes sur la même surface de balayage. Jusqu,ici, ... l,autre pour les empreintes digitales. Désormais, un seul scanner ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ - ... the request of IIROC on behalf of the Toronto ... this news release there are no corporate developments that ... price. --> --> ... --> . --> Aeterna Zentaris ...
(Date:11/24/2015)... SHPG ) announced today that Jeff ... 27 th Annual Healthcare Conference in New York ... a.m. EST (1:30 p.m. GMT). --> SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ...
(Date:11/24/2015)... ... November 24, 2015 , ... In ... paramount. Insertion points for in-line sensors can represent a weak spot where leaking ... 781/784 series of retractable sensor housings , which are designed to tolerate extreme ...
(Date:11/24/2015)... , Nov. 24, 2015 HemoShear Therapeutics, ... discovering drugs for metabolic disorders, announced today the ... its Board of Directors (BOD). Mr. Watkins is ... Human Genome Sciences (HGS), and also served as ... Jim Powers , Chairman and CEO of ...
Breaking Biology Technology: