Navigation Links
Manufacturing crack-resistant lightweight components
Date:9/6/2012

Cars, roof structures and bridges should become increasingly lighter, with the same stability, and thus save energy and materials. New high-strength steel is superbly suited for the needed lightweight design, because it can also withstand extremely heavy stresses. Yet these materials also betray a disadvantage: with increasing strength their susceptibility to cold cracking rises when welded. These miniscule fractures might form as the welded joints cool off typically at temperatures below 200C. In a worst case scenario, the welding seams would crack. For this reason, many industrial sectors are reluctant to employ these promising high-strength steel.

Scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, in conjunction with the Chair of Joining and Welding Technology LFT at Brandenburg University of Technology Cottbus (BTU) developed a new process for making cold cracking more predictable. "We are able to compute the probability of cold cracking as early as the design stage of a component, and immediately run through corrective measures as well," explains Frank Schweizer of the IWM. Because whether such cold cracking occurs, and how quickly, depends on how high the concentration of hydrogen in the steel is, how the residual stress turns out, and how its microstructure is configured. Predicting the probability of cracking has been difficult until now. Manufacturers used to conduct expensive testing, for example by applying an increasingly higher tensile stress to a sample component, and then analyse what stress level would cause cracking. Not only are these tests time-consuming and cost-intensive, the findings can- not be applied to subsequent components on a one-to-one basis because the geometry of the component has a decisive influence on crack formation. Even currently available computer simulations failed to deliver the desired predictive accuracy for real components.

Lowering production costs, shortening development phases

The new approach could markedly reduce such costly methods in the future and thus lower production costs while shortening development phases. The experts at LFT set up a special test, in order to precisely determine the cracking criterion on samples of highstrength steel. Beside typical influencing factors like hydrogen content, residual stresses and material structures that can be adjusted in at the same time, they also take into account the temperature gradients that emerge in the welding process.

The experts at IWM feed a computer simulation with this criterion in order to analyze the threat of cold cracking in random components and geometries. "This way, we can locate the areas on a welding seam at risk of cold cracking, for each point and at any time in the simulated welding process," explains Frank Schweizer. The researchers can also get a preliminary look at the effects of any countermeasures, and make the necessary adjustments. To do so, they transfert the results back into the simulation, in order to fine-tune them there.

In the future, with the aid of this process, manufacturers of vehicles and machines could be able to define non-critical welding parameters and limiting conditions for their materials in advance and thus establish a substantially more efficient and safer production process. This is especially relevant to materials that are difficult to weld, with very narrow processing windows regarding welding parameters or the pre- and post-heating temperatures. Fraunhofer IWM and LFT, in cooperation with Robert Bosch GmbH and ThyssenKrupp Steel Europe AG, are currently testing their new process on laser beam-welded demonstration models made of high-strength steels.


'/>"/>
Contact: Frank Schweizer
frank.schweizer@iwm.fraunhofer.de
49-761-514-2122
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
2. Hot new manufacturing tool: A temperature-controlled microbe
3. The future of biomaterial manufacturing: Spider silk production from bacteria
4. Micross Components Recognized as Teledyne Electronic Manufacturing Services Manufacturer of the Year
5. Intersil Expands Precision Analog IC Offerings with Micross Components
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Manufacturing crack-resistant lightweight components
(Date:3/23/2017)... Research and Markets has announced the addition ... - Industry Forecast to 2025" report to their offering. ... The Global Vehicle ... around 8.8% over the next decade to reach approximately $14.21 billion ... estimates and forecasts for all the given segments on global as ...
(Date:3/22/2017)... 21, 2017 Vigilant Solutions , a ... enforcement agencies, announced today the appointment of retired FBI ... public safety business development. Mr. Sheridan brings ... including a focus on the aviation transportation sector, to ... position, Mr. Sheridan served as the Aviation Liaison Agent ...
(Date:3/16/2017)... , March 16, 2017 CeBIT 2017 - Against identity fraud ... Continue Reading ... Used combined in one project, multi-biometric solutions provide a ... Used combined ... ...
Breaking Biology News(10 mins):
(Date:6/23/2017)... ... June 23, 2017 , ... ... all six of their healthcare job boards. As the largest network of ... therapists, and biotechnicians, DocCafe.com and the MedJobCafe.com Health Network work to match ...
(Date:6/22/2017)... ... 2017 , ... Building on the success of the inaugural RAADfest last year, ... latest developments in radical life extension. RAADfest combines cutting edge science presented for a ... personal development, making it the largest most comprehensive and inclusive super longevity event in ...
(Date:6/22/2017)... ... June 22, 2017 , ... Tunnell Consulting’s ... biopharma and life sciences industries, continue to be in demand for their insights ... will be speaking on “The State of Information Governance in the Biopharmaceutical Industry” ...
(Date:6/20/2017)... ... June 20, 2017 , ... ... the CTNext board of directors has formed a Higher Education Entrepreneurship Advisory Committee ... composed of institution presidents and other high-ranking representatives from 35 higher education institutions ...
Breaking Biology Technology: