Navigation Links
Manufacturing a new gut to treat GI diseases
Date:12/3/2013

Boston, MA For those living with gastrointestinal disorders, such as ulcers or Crohn's disease, treatment often means quelling uncomfortable symptoms through medications or dietary changes. But what if one day treatment meant doing away with the old gut for a new gut free of inflamed or diseased tissues?

That is where scientists at Brigham and Women's Hospital (BWH) and Massachusetts Institute of Technology (MIT) are hoping their new study findings will lead. In their work, the researchers were able to grow extensive numbers of intestinal stem cells, then coax them to develop into different types of mature intestinal cells.

The study is published online in this month's Nature Methods.

"Being able to produce a large inventory of intestinal stem cells could be incredibly useful for stem cell therapy, where the cells could be delivered to patients to treat diseases such as Crohn's disease and ulcerative colitis," said Jeffrey Karp, PhD, Division of Biomedical Engineering, BWH Department of Medicine, co-senior study author. "These cells could also be useful for pharmaceutical companies to screen and identify new drugs that could regulate diseases from inflammatory bowel disease, to diabetes, to obesity. However, to date there hasn't been a way to expand intestinal stem cell numbers."

In the "crypts" of the human gut are immature adult stem cells that live alongside specialized cells called Paneth cells. The stem cells remain immature as long as they remain in contact with Paneth cells. But the researchers found that when Paneth cells are removed and replaced with two small molecules involved in cell signaling, these molecules could direct the stem cells to develop into pure populations of proliferating stem cells. By introducing other molecules to the mix, the pure cells could further develop into specialized mature intestinal cells.

"This is an opportunity to generate a large number of relevant mature gastrointestinal cell types that was not possible before and enable high-throughput screening using these cell types," said Xiaolei Yin, PhD, Center for Regenerative Therapeutics, BWH Department of Medicine, lead study author.

Moreover, the researchers note that their findings could be potentially applied for in vivo use of small molecule drugs to help regenerate cells to replace damaged gut tissue caused by disease.

"This opens the door to doing all kinds of things, ranging from someday engineering a new gut for patients with intestinal diseases to doing drug screening for safety and efficacy," said Robert Langer, ScD, MIT, co-senior study author.


'/>"/>

Contact: Marjorie Montemayor-Quellenberg
mmontemayor-quellenberg@partners.org
617-525-6383
Brigham and Women's Hospital
Source:Eurekalert

Related biology news :

1. New technique controls dimensions of gold nanorods while manufacturing on a large scale
2. Training the future biomanufacturing workforce
3. Nanosensors could aid drug manufacturing
4. 3-D Printing and Additive Manufacturing preview issue publishing Fall 2013
5. Althea Technologies & Profectus BioSciences Sign Manufacturing Agreement For Plasmid DNA Production
6. Manufacturing crack-resistant lightweight components
7. Micross Components Recognized as Teledyne Electronic Manufacturing Services Manufacturer of the Year
8. The future of biomaterial manufacturing: Spider silk production from bacteria
9. Hot new manufacturing tool: A temperature-controlled microbe
10. The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
11. Newly discovered human peptide may become a new treatment for diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/12/2016)... 12, 2016 WearablesResearch.com , a brand ... overview results from the Q1 wave of its quarterly ... was consumers, receptivity to a program where they would ... health insurance company. "We were surprised to ... Michael LaColla , CEO of Troubadour Research, "primarily ...
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
Breaking Biology News(10 mins):
(Date:5/24/2016)... ... May 24, 2016 , ... Last week, Callan Capital, an integrated wealth management ... The Future of San Diego Life Science event at the Estancia La Jolla Resort ... the event with speakers Dr. Rich Heyman, former CEO of Aragon and Seragon, and ...
(Date:5/23/2016)... Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH), ... Board of Directors has approved the payment of a quarterly ... The cash dividend of $0.24 per share ... stockholders of record as of the close of business on ... approval of the Board of Directors and may be adjusted ...
(Date:5/23/2016)... ... May 23, 2016 , ... Foresight Institute , ... the winners for the 2015 Foresight Institute Feynman Prizes. , These prestigious ... categories, one for experiment and the other for theory in nanotechnology. Prof. Markus ...
(Date:5/20/2016)... ... May 20, 2016 , ... Korean researchers say Manumycin A ... offer a new way to treat the disease. Surviving Mesothelioma has just posted an ... Scientists from several Korean institutions based their mesothelioma study on the fact the Manumycin ...
Breaking Biology Technology: