Navigation Links
Mammals can be stimulated to regrow damaged inner retina nerve cells
Date:11/24/2008

Researchers at the University of Washington (UW) have reported for the first time that mammals can be stimulated to regrow inner nerve cells in their damaged retinas. Located in the back of the eye, the retina's role in vision is to convert light into nerve impulses to the brain.

The findings on retina self-repair in mammals will be published this week in the Early Edition of the Proceedings of the National Academy of Sciences. Other scientists have shown before that certain retina nerve cells from mice can proliferate in a laboratory dish. Today's report gives evidence that retina cells can be encouraged to regenerate in living mice.

The UW researchers in the laboratory of Dr. Tom Reh, professor of biological structure, studied a particular retinal cell called the Mller glia.

"This type of cell exists in all the retinas of all vertebrates," Reh said, "so the cellular source for regeneration is present in the human retina." He added that further studies of the potential of these cells to regenerate and of methods to re-generate them may lead to new treatments for vision loss from retina-damaging diseases, like macular degeneration.

The researchers pointed out the remarkable ability of cold-blooded vertebrates like fish to regenerate their retinas after damage. Birds, which are warm-blooded, have some limited ability to regenerate retinal nerve cells after exposure to nerve toxins. Fish can generate all types of retinal nerve cells, the researcher said, but chicks produce only a few types of retinal nerve cell replacements, and few, if any, receptors for detecting light.

Mller glia cells generally stop dividing after a baby's eyes pass a certain developmental stage. In both fish and birds, the researchers explained, damage to retinal cells prompts the specialized Mller glia cells to start dividing again and to increase their options by becoming a more general type of cell called a progenitor cell. These progenitor cells can then turn into any of several types of specialized nerve cells.

Compared to birds, the scientist said, mammals have an even more limited Mller glia cell response to injury. In an injured mouse or rat retina, the cells may react and become larger, but few start dividing again.

Because the Mller glia cells appeared to have the potential to regrow but won't do so spontaneously after an injury, several groups of researchers have tried to stimulate them to grow in lab dishes and in lab animals by injecting cell growth factors or factors that re-activate certain genes that were silenced after embryonic development. These studies showed that the Mller glia cells could be artificially stimulated to start dividing again, and some began to show light-detecting receptors. However, these studies, the researchers noted, weren't able to detect any regenerated inner retina nerve cells, except when the Mller glia cells were genetically modified with genes that specifically promote the formation of amacrine cells, which act as intermediaries in transmitting nerve signals.

"This was puzzling," Reh said, "because in chicks amacrine cells are the primary retinal cells that are regenerated after injury." To resolve the discrepancy between what was detected in chicks and not detected in rodents, the Reh laboratory conducted a systematic analysis of the response to injury in the mouse retina, and the effects of specific growth factor stimulation on the proliferation of Mller glia cells.

The researchers injected a substance into the retina to eliminate ganglion cells (a type of nerve cell found near the surface of the retina) and amacrine cells. Then by injecting the eye with epidermal growth factor (EGF), fibroblast growth factor 1 (FGF1) or a combination of FGF1 and insulin, they were able to stimulate the Mller glia cells to re-start their dividing engines and begin to proliferate across the retina.

The proliferating Mller glia cells first transformed into unspecialized cells. The researchers were able to detect this transformation by checking for chemical markers that indicate progenitor cells. Soon some of these general cells changed into amacrine cells. The researchers detected their presence by checking for chemicals produced only by amacrine cells.

Many of the progenitor cells arising from the dividing Mller glia cells, the researchers observed, died within the first week after their production. However, those that managed to turn into amacrine cells survived for at least 30 days.

"It's not clear why this occurs," the researchers wrote, "but some speculate that nerve cells have to make stable connections with other cells to survive."


'/>"/>

Contact: Leila Gray
leilag@u.washington.edu
206-685-0381
University of Washington
Source:Eurekalert

Related biology news :

1. Engineers study brain folding in higher mammals
2. Burrowing mammals dig for a living, but how do they do that?
3. Why diving marine mammals resist brain damage from low oxygen
4. Researchers to develop ocean sanctuary noise budget to evaluate potential impact on marine mammals
5. Arctic marine mammals on thin ice
6. Bee species outnumber mammals and birds combined
7. Scientists find redesigned hammer that forged evolution of pregnancy in mammals
8. Effects of anthropogenic sound on marine mammals -- a research strategy
9. Researchers document worlds mammals in crisis
10. 7 Texas mammals listed as threatened on Global Mammal Assessment
11. Population movements and money remittances spur forest regrowth
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... -- Research and Markets has announced the addition of ... Industry Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft ... 8.8% over the next decade to reach approximately $14.21 billion by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... , March 21, 2017 Vigilant Solutions ... serving law enforcement agencies, announced today the appointment of ... director of public safety business development. Mr. ... enforcement experience, including a focus on the aviation transportation ... most recent position, Mr. Sheridan served as the Aviation ...
(Date:3/16/2017)... CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made in Germany ... ... one project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog Identification Systems) ... Used combined in one project, multi-biometric solutions provide a crucial contribution ... ...
Breaking Biology News(10 mins):
(Date:6/14/2017)... ... June 14, 2017 , ... The newest company to join ... antibodies using rabbits that express human genes. ATGC, a spin out of the University ... 2015, ATGC is a translational genomics company. Its founders are among the first ...
(Date:6/14/2017)... (PRWEB) , ... June 13, ... ... a holistic approach for understanding the phenotype of an organism on a ... sample throughput and complicated data processing remain major bottlenecks to biomarker discovery ...
(Date:6/13/2017)... ... June 13, 2017 , ... ... flexible materials, has chosen The Copley Consulting Group to facilitate and deploy ... is aligning its manufacturing operations and strategic initiatives to increasing customer demands. ...
(Date:6/13/2017)... ... June 13, 2017 , ... ... the American Chemical Society (ACS) Green Chemistry Institute’s 21st Annual Green ... Dr. Feehery will address other business leaders, policy makers, educators, students and professionals ...
Breaking Biology Technology: