Navigation Links
Mammals can be stimulated to regrow damaged inner retina nerve cells

Researchers at the University of Washington (UW) have reported for the first time that mammals can be stimulated to regrow inner nerve cells in their damaged retinas. Located in the back of the eye, the retina's role in vision is to convert light into nerve impulses to the brain.

The findings on retina self-repair in mammals will be published this week in the Early Edition of the Proceedings of the National Academy of Sciences. Other scientists have shown before that certain retina nerve cells from mice can proliferate in a laboratory dish. Today's report gives evidence that retina cells can be encouraged to regenerate in living mice.

The UW researchers in the laboratory of Dr. Tom Reh, professor of biological structure, studied a particular retinal cell called the Mller glia.

"This type of cell exists in all the retinas of all vertebrates," Reh said, "so the cellular source for regeneration is present in the human retina." He added that further studies of the potential of these cells to regenerate and of methods to re-generate them may lead to new treatments for vision loss from retina-damaging diseases, like macular degeneration.

The researchers pointed out the remarkable ability of cold-blooded vertebrates like fish to regenerate their retinas after damage. Birds, which are warm-blooded, have some limited ability to regenerate retinal nerve cells after exposure to nerve toxins. Fish can generate all types of retinal nerve cells, the researcher said, but chicks produce only a few types of retinal nerve cell replacements, and few, if any, receptors for detecting light.

Mller glia cells generally stop dividing after a baby's eyes pass a certain developmental stage. In both fish and birds, the researchers explained, damage to retinal cells prompts the specialized Mller glia cells to start dividing again and to increase their options by becoming a more general type of cell called a progenitor cell. These progenitor cells can then turn into any of several types of specialized nerve cells.

Compared to birds, the scientist said, mammals have an even more limited Mller glia cell response to injury. In an injured mouse or rat retina, the cells may react and become larger, but few start dividing again.

Because the Mller glia cells appeared to have the potential to regrow but won't do so spontaneously after an injury, several groups of researchers have tried to stimulate them to grow in lab dishes and in lab animals by injecting cell growth factors or factors that re-activate certain genes that were silenced after embryonic development. These studies showed that the Mller glia cells could be artificially stimulated to start dividing again, and some began to show light-detecting receptors. However, these studies, the researchers noted, weren't able to detect any regenerated inner retina nerve cells, except when the Mller glia cells were genetically modified with genes that specifically promote the formation of amacrine cells, which act as intermediaries in transmitting nerve signals.

"This was puzzling," Reh said, "because in chicks amacrine cells are the primary retinal cells that are regenerated after injury." To resolve the discrepancy between what was detected in chicks and not detected in rodents, the Reh laboratory conducted a systematic analysis of the response to injury in the mouse retina, and the effects of specific growth factor stimulation on the proliferation of Mller glia cells.

The researchers injected a substance into the retina to eliminate ganglion cells (a type of nerve cell found near the surface of the retina) and amacrine cells. Then by injecting the eye with epidermal growth factor (EGF), fibroblast growth factor 1 (FGF1) or a combination of FGF1 and insulin, they were able to stimulate the Mller glia cells to re-start their dividing engines and begin to proliferate across the retina.

The proliferating Mller glia cells first transformed into unspecialized cells. The researchers were able to detect this transformation by checking for chemical markers that indicate progenitor cells. Soon some of these general cells changed into amacrine cells. The researchers detected their presence by checking for chemicals produced only by amacrine cells.

Many of the progenitor cells arising from the dividing Mller glia cells, the researchers observed, died within the first week after their production. However, those that managed to turn into amacrine cells survived for at least 30 days.

"It's not clear why this occurs," the researchers wrote, "but some speculate that nerve cells have to make stable connections with other cells to survive."


Contact: Leila Gray
University of Washington

Related biology news :

1. Engineers study brain folding in higher mammals
2. Burrowing mammals dig for a living, but how do they do that?
3. Why diving marine mammals resist brain damage from low oxygen
4. Researchers to develop ocean sanctuary noise budget to evaluate potential impact on marine mammals
5. Arctic marine mammals on thin ice
6. Bee species outnumber mammals and birds combined
7. Scientists find redesigned hammer that forged evolution of pregnancy in mammals
8. Effects of anthropogenic sound on marine mammals -- a research strategy
9. Researchers document worlds mammals in crisis
10. 7 Texas mammals listed as threatened on Global Mammal Assessment
11. Population movements and money remittances spur forest regrowth
Post Your Comments:
(Date:11/12/2015)... 2015  Arxspan has entered into an agreement ... for use of its ArxLab cloud-based suite of ... partnership will support the institute,s efforts to electronically ... information internally and with external collaborators. The ArxLab ... the Institute,s electronic laboratory notebook, compound and assay ...
(Date:11/10/2015)...  In this report, the biomarkers market ... type, application, disease indication, and geography. The ... consumables, services, software. The type segments included ... biomarkers, and validation biomarkers. The applications segments ... drug discovery and development, personalized medicine, disease ...
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ... November 30, 2015 , ... Imagine Exhibitions and Universal Partnerships ... opening in March 2016 at Melbourne Museum in Melbourne, Australia. Immediately following the ... American tour dates. The Exhibition is based on Universal Pictures’ Jurassic World, one ...
(Date:11/30/2015)... , Nov. 30, 2015 Human Longevity, ... the company has acquired Cypher Genomics, Inc., a leading ... human genomic interpretation software solutions. The San ... join HLI including Cypher CEO and Co-founder, Ashley Van ... HLI,s Pediatric Business.  Financial details of the deal were ...
(Date:11/30/2015)... -- HUYA Bioscience International, the leader in accelerating global development ... announced it has signed a Memorandum of Understanding with ... between KDDF and HUYA with the ultimate goal of ... the global market. China,s ... preclinical and clinical stage compounds. The company advances the ...
(Date:11/30/2015)... , Nov. 30, 2015  AbbVie, is introducing ... that focuses on a daily routine for managing the ... their medication can affect the way the body absorbs ... to their a daily routine are important. The goal ... help patients better manage their hypothyroidism by establishing a ...
Breaking Biology Technology: