Navigation Links
Malaria's newest pathway into human cells identified
Date:9/24/2010

Development of an effective vaccine for malaria is a step closer following identification of a key pathway used by the malaria parasite to infect human cells. The discovery, by researchers at The Walter and Eliza Hall Institute in Melbourne, Australia, provides a new vaccine target through which infection with the deadly disease could be prevented.

Each year more than 400 million people contract malaria, and more than one million, mostly children, die from the disease. The most lethal form of malaria is caused by the parasite Plasmodium falciparum. Part of the parasite's success lies in its ability to deploy multiple ways to invade red blood cells, a process essential for the survival of the parasite within the human host.

Professor Alan Cowman, head of the institute's Infection and Immunity division, led the research with Dr Wai-Hong Tham, Dr Danny Wilson, Mr Sash Lopaticki, Mr Jason Corbin, Dr Dave Richard, Dr James Beeson from the institute and collaborators at the University of Edinburgh.

For decades, it has been known that malaria parasites use proteins called glycophorins as a means of entering red blood cells. This new research reveals an alternative pathway used by the parasite to enter red blood cells. The pathway does not involve glycophorins, instead requiring the binding of a parasite molecule named PfRh4 to Complement Receptor 1 (CR1), a common protein found on the surface of red blood cells.

"The parasite is like a master burglar it will try a variety of different methods to get into the house, not just the front door," Professor Cowman said. "Although the human body has evolved a variety of methods to keep the parasite out, it keeps finding new ways to get in."

Professor Cowman said the PfRh family of surface proteins is involved in the recognition of red blood cell receptors, which allows the parasite to attach to the red blood cell surface and gain entry.

"We think that the parasite uses this protein to correctly identify the red blood cell and say 'Yes, this is the one we want to invade', it's like a quality assurance process," Professor Cowman said.

"The PfRh4-CR1 pathway is one of the most important of the pathways we've identified for entry of malaria parasites into cells," Professor Cowman said. "We are now at the stage where we have identified the best combination of proteins for a vaccine, and are ready to start clinical development.

"When both glycophorin and CR1 pathways are blocked, there is a 90 per cent decrease in infection of the cells with the parasite. These results suggest that if a vaccine were to stimulate the immune system to recognise and generate antibodies to the prevalent invasion pathways, there is a good chance it would lead to a significant decrease in malaria infection."


'/>"/>

Contact: Penny Fannin
fannin@wehi.edu.au
61-393-452-345
Walter and Eliza Hall Institute
Source:Eurekalert  

Related biology news :

1. Electricity collected from the air could become the newest alternative energy source
2. New 2009 Impact Factors soar for newest Cell Press journals
3. UT Southwestern patient first in North Texas to receive newest-generation heart failure device
4. Scripps scientists develop test providing new pathway for identifying obesity, diabetes drugs
5. Discovery of key pathway interaction may lead to therapies that aid brain growth and repair
6. New pathway identified in Parkinsons through brain imaging
7. Calcium connections: Basic pathway for maintaining cells fuel stores
8. Mapping out pathways to better soybeans
9. NIH-supported study finds novel pathway may open doors for new blood pressure treatments
10. UMMS researchers uncover novel genetic pathway responsible for triggering vascular growth
11. Second plant pathway could improve nutrition, biofuel production
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Malaria's newest pathway into human cells identified
(Date:1/20/2016)... , Jan. 20, 2016   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... MedNet,s significant achievements are the result of the company,s ... iMedNet eClinical , it,s comprehensive, easy-to-use and ... --> Key MedNet growth achievements in ...
(Date:1/18/2016)... Jan. 18, 2016  Extenua Inc., a pioneering ... the use and access of ubiquitous on-premise and ... with American Cyber.  ... leading transformational C4ISR and Cyber initiatives in support ... latest proven technology solutions," said Steve Visconti ...
(Date:1/13/2016)... ALBANY, New York , January 13, 2016 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2023. According to ... mn in 2014 and is anticipated to reach US$1,625.8 ... from 2015 to 2023. In terms of volume, the ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... BEACH, Florida , February 11, 2016 /PRNewswire/ ... PositiveID Corporation ("PositiveID" or "Company") (OTCQB: PSID), ... diagnostics, announced today that its Thermomedics subsidiary, which ... progress on its growth plan in January 2016, ... products distributors, increasing sequential monthly sales growth, and ...
(Date:2/10/2016)... , Febr. 10, 2016 /PRNewswire/ - BioAmber Inc. (NYSE: ... pleased to announce that Mitsui & Co. Ltd., its ... succinic acid plant, is investing an additional CDN$25 million ... increasing its stake from 30% to 40%.  Mitsui will ... bio-succinic acid produced in Sarnia , ...
(Date:2/10/2016)... , ... February 10, 2016 ... ... today announced that it has joined the Human Vaccines Project, a public-private ... diseases and cancer. , The Human Vaccines Project brings together leading ...
(Date:2/10/2016)... Springfield, MO (PRWEB) , ... February 10, 2016 ... ... company, will attend the International Society of Pharmaceutical Engineering (ISPE) Rocky Mountain Chapter ... of ISPE is expecting to fill more than 100 tables for its annual ...
Breaking Biology Technology: