Navigation Links
Malaria research begins to bite
Date:10/21/2010

Scientists at The University of Nottingham and the Wellcome Trust Sanger Institute near Cambridge have pin-pointed the 72 molecular switches that control the three key stages in the life cycle of the malaria parasite and have discovered that over a third of these switches can be disrupted in some way.

Their research which has been funded by Wellcome Trust and the Medical Research Council (MRC) is a significant breakthrough in the search for cheap and effective vaccines and drugs to stop the transmission of a disease which kills up to a million children a year.

Until now little has been known about the cellular processes involved in the development of this deadly disease. The research, published in the journal Cell Host & Microbe, involved the very first comprehensive functional analysis of protein kinases in any malaria parasite. It is also the largest gene knock-out study in Plasmodium berghei a malaria parasite infecting rodents.

Dr Rita Tewari, in the School of Biology at The University of Nottingham, led the research. Dr Tewari said: "Blocking parasite transmission is recognised as an important element in the global fight to control malaria. Kinases are a family of proteins which contribute to the control of nearly all cellular processes and have already become major drug targets in the fight against cancer and other diseases. Now we have identified some key regulators that control the transmission of the malaria parasite. Work to develop drugs to eradicate this terrible disease can now focus on the best targets. This study shows how systematic functional studies not only increase our knowledge in understanding complexity of malaria parasite development but also gives us the rational approach towards drug development."

The life cycle of the malaria parasite is complex. Once the mosquito has feasted off infected blood fertilisation takes place within the mosquito. The deadly parasites are then injected back into another host in large numbers when the mosquito bites again. Once inside its mammalian host the parasite first infects the liver where it replicates again. After 48 hours millions of parasites are released into the red bloods cells of its host where they attack in vast numbers overwhelming their host producing high fever and sickness.

Dr Oliver Billker, an expert in pathogen genetics at the Wellcome Trust Sanger Institute, said: "This is a major leap forward we can now set aside these 23 functionally redundant genes. This act of prioritisation alone has narrowed the set of targets for drug searches by a third. "Our study demonstrates how a large scale gene knockout study can guide drug development efforts towards the right targets. We must now develop the technology to ask across the genome which pathways are important for parasite development and transmission."

As the malaria parasite becomes increasingly resistant to existing drugs and vaccines the race to find ways of blocking the transmission of malaria is becoming increasingly important. Last month the journal PLoS ONE published Dr Tewari's research which identified a protein, PF16, which is critical in the development of the malaria parasite specifically the male sex cells (gametes) which are essential in the spread by mosquitoes of this lethal parasite. The study, led by The University of Nottingham, found a way of disabling the PF16 protein.

In future studies, Dr Tewari's group is concentrating on the role of other signalling molecules like phosphatases, kinases and armadillo repeat proteins and their interaction in understanding malaria parasite development. The aim is to identify the best drug or vaccine target along the way.

The University of Nottingham has broad research portfolio but has also identified and badged 13 research priority groups, in which a concentration of expertise, collaboration and resources create significant critical mass. Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society.

Through these groups, Nottingham researchers will continue to make a major impact on global challenges.


'/>"/>

Contact: Lindsay Brooke
lindsay.brooke@nottingham.ac.uk
44-115-951-5751
University of Nottingham
Source:Eurekalert

Related biology news :

1. NTDs burden in Latin America and the Caribbean may exceed that of HIV/AIDS, TB and malaria
2. New way to make malaria medicine also first step in finding new antibiotics
3. Geisinger research: Antimalarial drug prevents diabetes in arthritis patients
4. ASU researchers receive NIH awards for studies of malaria and emergent disease
5. New papers offer insights into process of malarial drug resistance
6. African thicket rat malaria linked to virulent human form
7. Malaria parasite zeroes in on molecule to enhance its survival, team finds
8. LSTM and UoL secure £1.4m ($2m) to develop new magic bullet antimalarial drug
9. Milestone achieved toward production of malaria treatment using synthetic biology and fermentation
10. Synthetic biology can help extend anti-malaria drug effectiveness
11. Researchers identify new way the malaria parasite and red blood cells interact
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... LONDON , Feb. 7, 2017 Report ... $12.5 billion by 2021 from $8.3 billion in 2016 ... from 2016 to 2021. Report Includes - An ... of global market trends, with data from 2015 and ... through 2021. - Segmentation of the market on the ...
(Date:2/3/2017)... Biomedical Research Institute announced that its Board of Trustees has ... Institute,s new President and CEO. Dr. Schlesinger will take the ... currently the Chair of the Department of Microbial Infection and ... at Ohio State University. "We are delighted to ... Texas Biomed," said Dr. James O. Rubin , Board ...
(Date:2/1/2017)... IDTechEx Research, a leading provider of independent market research, ... a new report, Sensors for Robotics: Technologies, Markets and Forecasts ... ... Revenues ... "Sensors for Robotics: Technologies, Markets and Forecasts 2017-2027: Machine vision, force ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... 22, 2017 Aethlon Medical, Inc. (Nasdaq: ... study that validated the ability of the Aethlon Hemopurifier® ... increased mortality in immune-suppressed sepsis patients and also contribute ... The objective of the study was to validate the ... virus (EBV) and Herpes Simplex virus 1 (HSV1) by ...
(Date:2/22/2017)... PARK, N.C., Feb. 22, 2017  United Therapeutics Corporation ... financial results for the fourth quarter and year ... financial results reflect continued growth as net revenues ... said Martine Rothblatt, Ph.D., United Therapeutics, Chairman and ... ability to develop and advance our growing product ...
(Date:2/21/2017)... ... February 21, 2017 , ... ... Liquid Biopsy System , a fully automated benchtop system for collecting intact circulating ... is being launched at the Molecular Medicine Tri Conference (Tri-Con) Annual Meeting 2017 ...
(Date:2/21/2017)... , ... February 21, 2017 ... ... Life -Sciences division, Treximo will pair its $200M operational capacity with its ... and project management in areas affecting quality and operational management. With ...
Breaking Biology Technology: