Navigation Links
Malaria-infected cells stiffen, block blood flow
Date:12/20/2010

PROVIDENCE, R.I. [Brown University] Although the incidence of malaria has declined in all but a few countries worldwide, according to a World Health Organization report earlier this month, malaria remains a global threat. Nearly 800,000 people succumbed to the mosquito-borne disease in 2009, nearly all of them in the developing world.

Physicians do not have reliable treatment for the virus at various stages, largely because no one has been able to document the malaria parasite's journeys in the body.

Now researchers at Brown University and the Massachusetts Institute of Technology have used advanced computer modeling and laboratory experiments to show how malaria parasites change red blood cells and how the infected cells impede blood flow to the brain and other critical organs.

Their findings, published in the early online edition of the Proceedings of the National Academy of Sciences, could help doctors chart, in real time, the buildup in the body of cells infected with malaria or other diseases (such as sickle-cell anemia) and to prescribe treatment accordingly.

"The idea is to predict the evolution of these diseases, just like we predict the weather," said George Karniadakis, professor of applied mathematics at Brown and corresponding author on the paper.

The researchers worked with Plasmodium falciparum, a parasite that can cause cerebral malaria by lodging in capillaries of the brain, especially among children. The parasite is found globally but is most common in Africa.

Once introduced into the human body by an infected mosquito's bite, the parasite invades red blood cells. Healthy red blood cells are tremendously elastic; even though they can reach 8 microns in length and 2 microns in thickness, they can easily slide through a capillary just 3 microns in diameter. Capillaries are vital conduits in the human brain and other organs; red blood cells are key transporters of oxygen and nutrients.

Through extensive modeling carried out on one of the world's fastest supercomputers at the National Institute for Computational Sciences, Karniadakis and colleagues found that malaria-infected red blood cells stiffened as much as 50 times more than healthy red blood cells. The result: Infected red blood cells, having lost their elasticity, could no longer pass through capillaries, effectively blocking them.

"Basically what happens is the brain could be deprived of nutrients and oxygen," said Karniadakis, a member of the Center for Fluid Dynamics, Turbulence and Computation at Brown. "This happens because of the deformation of these red blood cells.

"This shows that as stiffening increases (in red blood cells), the viscosity of the blood increases, and the heart has to pump twice as much sometimes to get the same blood flow," Karniadakis added.

The researchers also found that infected red blood cells had a tendency to stick, flip, and flop along the walls of blood vessels unlike healthy blood cells that flow in the middle of the channel. For reasons not entirely known, the infected red blood cells develop little knobby protrusions on their cellular skin that tend to stick to the surface of the blood wall, known as the endothelium. Scientists call the sticking cytoadhesion.

"So, what happens is the infected red blood cell is not only stiffer, it's slowed down by this interaction (cytoadhesion)," Karniadakis said. "This drastically changes the flow of blood in the brain, especially in the arterials and in the capillaries."


'/>"/>

Contact: Richard Lewis
Richard_Lewis@brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology news :

1. Blocking the critical structure that lets cancer cells move -- their feet
2. A protein called cFLIP makes tumor cells in breast cancer resistant to treatments
3. Stem cells turned into complex, functioning intestinal tissue in lab
4. Directed self-assembly of vertical nanotubes for biosensors, logic, nano-biofuel cells
5. On...off...on...off... The circuitry of insulin-releasing cells
6. Shotgun method allows scientists to dissect cells sugar coatings
7. Plant clock gene also works in human cells
8. Scripps Research scientists redefine the role of plasma cells in the immune system
9. Finger-trap tension stabilizes cells chromosome-separating machinery
10. Remarkable biological complexity of bacterial cells is focus of newly released book
11. New imaging technique accurately finds cancer cells, fast
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Malaria-infected cells stiffen, block blood flow
(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
(Date:3/24/2017)... March 24, 2017 The Controller General of Immigration ... Abdulla Algeen have received the prestigious international IAIR Award for ... Continue Reading ... ... Deputy Controller Abdulla Algeen (small picture on the right) have received the ...
Breaking Biology News(10 mins):
(Date:6/23/2017)... and CARDIFF, UK (PRWEB) , ... June 23, 2017 , ... ... and Brian Lula, president of Physik Instrumente USA, have been selected as this year’s ... photonics . , The two have been invited along with other honorees to accept ...
(Date:6/22/2017)... ... June 21, 2017 , ... Building on the success of the inaugural RAADfest ... the very latest developments in radical life extension. RAADfest combines cutting edge science presented ... empowerment of personal development, making it the largest most comprehensive and inclusive super longevity ...
(Date:6/22/2017)... ... June 22, 2017 , ... The first human cell ... years until the first data on cross-contamination of human cell lines with HeLa cells ... increasing issue in cell culture labs and is associated with dramatic consequences for research. ...
(Date:6/20/2017)... (PRWEB) , ... June 20, 2017 , ... ... to immediately determine the adulterants which pose the most likely threat to their ... 28 of this year. , IFT's annual food expo attracts over 20,000 ...
Breaking Biology Technology: