Navigation Links
Making memories: How 1 protein does it
Date:3/5/2012

Studying tiny bits of genetic material that control protein formation in the brain, Johns Hopkins scientists say they have new clues to how memories are made and how drugs might someday be used to stop disruptions in the process that lead to mental illness and brain wasting diseases.

In a report published in the March 2 issue of Cell, the researchers said certain microRNAsgenetic elements that control which proteins get made in cells are the key to controlling the actions of so-called brain-derived neurotrophic factor (BDNF), long linked to brain cell survival, normal learning and memory boosting.

During the learning process, cells in the brain's hippocampus release BDNF, a growth-factor protein that ramps up production of other proteins involved in establishing memories. Yet, by mechanisms that were never understood, BDNF is known to increase production of less than 4 percent of the different proteins in a brain cell.

That led Mollie Meffert, M.D., Ph.D., associate professor of biological chemistry and neuroscience at the Johns Hopkins University School of Medicine to track down how BDNF specifically determines which proteins to turn on, and to uncover the role of regulatory microRNAs.

MicroRNAs are small molecules that bind to and block messages that act as protein blueprints from being translated into proteins. Many microRNAs in a cell shut down protein production, and, conversely, the loss of certain microRNAs can cause higher production of specific proteins.

The researchers measured microRNA levels in brain cells treated with BDNF and compared them to microRNA levels in neurons not treated with BDNF. The researchers noticed that levels of certain microRNAs were lower in brain cells treated with BDNF, suggesting that BDNF controls the levels of these microRNAs and, through this control, also affects protein production. Homing in on those specific microRNAS that disappeared when cells were treated with BDNF, the team found all were of the same type, so-called Let-7 microRNAs, and that all shared a common genetic sequence.

"This short genetic sequence has been shown by other researchers to behave like a bar code that can selectively prevent production of Let-7 microRNAs," says Meffert.

To test if the loss of Let-7 microRNAs lets BDNF increase production of specific proteins, Meffert's team genetically engineered neurons so they could no longer decrease Let-7 microRNAs. They found that treating these neurons with BDNF no longer resulted in decreased microRNA levels or an increase in learning and memory proteins.

In measuring microRNA levels in cells treated with BDNF, the researchers also found more than 174 microRNAs that increased with BDNF treatment. This suggested to the research team that BNDF treatment also can increase other microRNAs and, thereby, decrease production of certain proteins. Says Meffert, some of these proteins may need to be decreased during learning and memory, whereas others may not contribute to the process at all.

To confirm that BDNF, via microRNA action, halts the production of certain proteins, the researchers monitored living brain cells to find out where messages go in response to BDNF. Messages that aren't translated into proteins can accumulate inside small formations within cells. Using a microscope, the researchers watched a lab dish containing brain cells that had been marked with a fluorescent molecule that labels these formations as glowing spots. Treating cells with BDNF caused the number and size of the glowing spots to increase. The researchers determined that BDNF uses microRNA to send messages to these spots where they can be exiled away from the translating machinery that turns them into protein.

"Monitoring these fluorescent complexes gave us a window that we needed to understand how BDNF is able to target the production of only certain proteins that help neurons to grow and make learning possible," Meffert says. (Insert videos here: http://www.youtube.com/watch?v=IPXeP7xEg-E and http://www.youtube.com/watch?v=MHW6ZdrPhyM)

Adds Meffert, "Now that we know how BDNF boosts production of learning and memory proteins, we have an opportunity to explore whether therapeutics can be designed to enhance this mechanism for treatment of patients with mental disorders and neurodegenerative diseases like Alzheimer's disease."


'/>"/>

Contact: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medical Institutions
Source:Eurekalert  

Related biology news :

1. The making of Dig It! the Secrets of Soil exhibit
2. Making metabolism more inefficient can reduce obesity
3. Making flies sick reveals new role for growth factors in immunity
4. Scientists present moving theory behind bacterial decision-making
5. Making the ultimate family sacrifice
6. Tips for making a green holiday from the worlds largest scientific society
7. How chromosomes meet in the dark -- Switch that turns on X chromosome matchmaking
8. Process can cut the cost of making cellulosic biofuels
9. U of Minnesota research finds most road salt is making it into the states lakes and rivers
10. MacArthur Foundation awards planning grant to improve decision-making in energy policy
11. It takes a genome: How a clash between our genes and modern life is making us sick
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Making memories: How 1 protein does it
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
(Date:6/1/2016)... 1, 2016 Favorable Government Initiatives ... and Criminal Identification to Boost Global Biometrics System Market ... TechSci Research report, " Global Biometrics Market By ... and Opportunities, 2011 - 2021", the global biometrics market ... on account of growing security concerns across various end ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... , ... Supplyframe, the Industry Network for electronics hardware design ... Located in Pasadena, Calif., the Design Lab’s mission is to bring together inventors ... and brought to market. , The Design Lab is Supplyframe’s physical representation of ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... regulatory and technical consulting, provides a free webinar on Performing Quality ... 13, 2016 at 12pm CT at no charge. , Incomplete investigations are still ...
Breaking Biology Technology: