Navigation Links
Making complex nanoparticles easily reproducible
Date:10/28/2013

CLEVELANDA pair of Case Western Reserve University researchers have received a $424,000 grant from the National Science Foundation's Division of Civil, Mechanical and Manufacturing Innovation, to streamline manufacturing and assembly for two-sided nanoparticles.

Nicole Steinmetz, an assistant professor of biomedical engineering, and Rigoberto Advincula, professor of macromolecular science and engineering, aim to develop processes that can be used by industry.

The engineers are focusing on Janus particles, named for the Roman god of beginnings and transitions.

These-two sided particles could carry a one-two punch of paired medicines, or a drug on one side and a dye on the other that enables doctors using an MRI to see whether the particle penetrates a tumor. Or, the engineers can mix other properties on a particle to provide unique optics for displays, convert energy from one form to another or store data.

"Many things that are discovered never move out of the lab," Steinmetz, an appointee of the Case Western Reserve School of Medicine, said. "The challenge is to make complicated nanoparticles that are easily reproducible."

"We're interested in nanomanufacturing that produces a high yield," Advincula said.

To make the technology realistic for the outside world, the researchers plan to make their particles in one phase, that is, pour all their ingredients into a test tube and produce a particle with different reactive surfaces, designed to host different functions, on each side.

Steinmetz's part of the mix will produce spherical scaffolds using the cowpea mosaic virus or elongated scaffolds using tobacco mosaic virus. The shapes offer different advantages for different uses. She'll engineer the genetics to control dimensions and surface chemistry.

Advincula's ingredients will produce the reactive surfaces in the form of hyperbranching polymers.

"Typically, polymers are long single chains; we specialize in making polymer trees," Advincula said. "Each branch is a reactive group. The branches concentrate the reactive groups at one site, increasing functionality at one location."

The branches, for example, can be made to latch onto target molecules or develop into specific geometric shapes that are recognized by sensors or used to control or produce light.

The researchers believe that if they can make the processing simple and economical enough then pharmaceutical developers, electronics makers and other businesses will take advantage of the nanoparticles, producing devices that contribute to quality of life, sustainability, and technological competitiveness.


'/>"/>

Contact: Kevin Mayhood
kevin.mayhood@case.edu
216-368-4442
Case Western Reserve University
Source:Eurekalert

Related biology news :

1. Making eye contact doesnt always help your cause
2. Making a common cosmetic and sunblock ingredient safer
3. Scientists discover cosmic factory for making building blocks of life
4. New cell component important to tea and wine-making
5. Not the end of the world: Why Earths greatest mass extinction was the making of modern mammals
6. Making the brain take notice of faces in autism
7. Geoscientists unearth mineral-making secrets potentially useful for new technologies
8. New study reveals important role of insulin in making breast milk
9. New catalyst could cut cost of making hydrogen fuel
10. Making hydrogenation greener
11. Women reject sexually promiscuous peers when making female friends
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
(Date:3/29/2016)... Florida , March 29, 2016 ... the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased ... in ink used in a variety of writing instruments, ... Buyers of originally created collectibles from athletes on LegacyXChange ... forensic analysis of the DNA. Bill ...
(Date:3/22/2016)... , PROVO and ... -- Newborn Screening Ontario (NSO), which operates the highest ... for molecular testing, and Tute Genomics and UNIConnect, leaders ... technology respectively, today announced the launch of a project ... sequencing (NGS) testing panel. NSO has ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... ... 28, 2016 , ... Next week on May 5 at ... technologies for tissue stem cell counting and expansion to gene-editing scientists and other ... CRISPR-based Genome Engineering in Burlington, Massachusetts. , The attention of most gene-editing scientists ...
(Date:4/27/2016)... ... 2016 , ... Shimadzu Scientific Instruments (SSI) will be showcasing ... Conference and Expo. Shimadzu’s high-performance instruments enable laboratories to test cannabis products for ... stop by booth 1021 to learn how Shimadzu’s instruments can help improve QA/QC ...
(Date:4/27/2016)... SILVER SPRING, Md. and RESEARCH ... -- United Therapeutics Corporation (NASDAQ: UTHR ) announced ... Co-Chief Executive Officer, of United Therapeutics will provide an ... Deutsche Bank 41 st Annual Health Care Conference. ... May 5, 2016, at 10:00 a.m. Eastern Time, and ...
(Date:4/27/2016)... Winnipeg, Manitoba (PRWEB) , ... April 27, 2016 ... ... commercially released for simultaneous preclinical PET (Positron Emission Tomography) and MRI (Magnetic Resonance ... for better understanding disease and testing novel treatments in small animal subjects. Simultaneous ...
Breaking Biology Technology: