Navigation Links
Major breakthrough in understanding Prader-Willi Syndrome, a parental imprinting disorder
Date:5/12/2014

Scientists at the Hebrew University of Jerusalem have reported a major breakthrough in understanding the molecular basis for Prader-Willi syndrome (PWS), perhaps the most studied among the class of diseases that involves defects in parental imprinting.

The work, described in the latest online edition of the prestigious journal Nature Genetics, was led by Prof. Nissim Benvenisty, the Herbert Cohn Professor of Cancer Research and director of the Stem Cell Unit at the Alexander Silberman Institute of Life Sciences at the Hebrew University; and his PhD student Yonatan Stelzer. Also assisting in the research were graduate student Ido Sagi and Dr. Ofra Yanuka and Dr. Rachel Eiges.

Parental imprinting is a mode of inheritance that results in a small subset of genes to be expressed exclusively from either the mother or father. Prader-Willi syndrome is perhaps the best characterized disease of this sort. It is a multisystem disorder characterized by learning disabilities, excessive weight gain and defective sexual development, and is known to result from aberrations in paternal genes in what is known as the Prader-Willi genomic region of chromosome 15.

"What characterizes this chromosomal region is that paternal genes are active, while the maternal genes are inactive. And while most people would have one normal working and one silenced set of these genes, people with Prader-Willi syndrome have only a defective set (the paternal one) and a silenced (maternal) set," explains Stelzer.

In order to achieve a greater understanding of this process, the Hebrew University investigators created a model for the Prader-Willi syndrome by reprogramming skin cells from PWS patients into embryonic-like cells. Utilizing this system, the investigators have shown that the genes expressed from the father are actually affecting and silencing the genes that are expressed from the mother. These findings have significance in the way that we view parental imprinting and in particular the molecular basis of Prader-Willi syndrome, the scientists say.

Future research should allow further characterization of the contribution of this novel genetic region to the origin of this disease, and perhaps pave the way for identification of possible treatment and characterization of PWS patients. Furthermore, the identification of functional, genomic cross-talk in regions containing parental imprinted genes may significantly change our overall understanding of the evolution of this phenomenon in placental mammals, say the researchers.


'/>"/>

Contact: Dov Smith
dovs@savion.huji.ac.il
972-258-82844
The Hebrew University of Jerusalem
Source:Eurekalert  

Related biology news :

1. New towns going up in developing nations pose major risk to the poor
2. Academy of Natural Sciences receives major grant for program to protect drinking water
3. Major breakthrough in stem cell manufacturing technology
4. Climate engineering: Minor potential, major side effects
5. Graduate student makes major discovery about seal evolution
6. First biological marker for major depression could enable better diagnosis and treatment
7. From artificial to natural, the food industry makes a major shift
8. Cambridge and Norwich win major boost for synthetic biology
9. Big-headed fossil flies track major ecological revolution
10. Academy honors 15 for major contributions to science
11. Fast food not the major cause of rising childhood obesity rates
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Major breakthrough in understanding Prader-Willi Syndrome, a parental imprinting disorder
(Date:3/30/2017)... , March 30, 2017  On April 6-7, ... Hack the Genome hackathon at Microsoft,s headquarters ... two-day competition will focus on developing health and wellness ... Hack the Genome is the first ... tremendous. The world,s largest companies in the genomics, tech ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities ... (physiological and behavioral), by technology (fingerprint, AFIS, iris recognition, ... recognition, and others), by end use industry (government and ... immigration, financial and banking, and others), and by region ... , Asia Pacific , and ...
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... ... May 18, 2017 , ... Dr. Ralph ... at the Prince Of Wales Private Hospital. The procedure was performed on a ... patient failed conservative treatments prior to undergoing surgery. , The AxioMed viscoelastic disc ...
(Date:5/18/2017)... ... , ... NDA Partners Chairman Carl Peck, MD , announced today that ... President of Pharmaceutical Development Business Unit of Cardinal Health, has joined the firm as ... was former Chief Operating Officer at Anaborex, Senior VP and General Manager of the ...
(Date:5/18/2017)... ... May 17, 2017 , ... ... optimization firm for the life sciences and healthcare industries, is honored that ... for Medical Devices conference in Brussels, Belgium. , Crowley played a crucial role ...
(Date:5/18/2017)... ... May 17, 2017 , ... Many complicated neurological ... to develop Alzheimer’s disease, while men are at greater risk for Parkinson’s disease. ... bias is the aim of a research program at Worcester Polytechnic Institute (WPI) ...
Breaking Biology Technology: