Navigation Links
Major breakthrough in understanding Prader-Willi Syndrome, a parental imprinting disorder
Date:5/12/2014

Scientists at the Hebrew University of Jerusalem have reported a major breakthrough in understanding the molecular basis for Prader-Willi syndrome (PWS), perhaps the most studied among the class of diseases that involves defects in parental imprinting.

The work, described in the latest online edition of the prestigious journal Nature Genetics, was led by Prof. Nissim Benvenisty, the Herbert Cohn Professor of Cancer Research and director of the Stem Cell Unit at the Alexander Silberman Institute of Life Sciences at the Hebrew University; and his PhD student Yonatan Stelzer. Also assisting in the research were graduate student Ido Sagi and Dr. Ofra Yanuka and Dr. Rachel Eiges.

Parental imprinting is a mode of inheritance that results in a small subset of genes to be expressed exclusively from either the mother or father. Prader-Willi syndrome is perhaps the best characterized disease of this sort. It is a multisystem disorder characterized by learning disabilities, excessive weight gain and defective sexual development, and is known to result from aberrations in paternal genes in what is known as the Prader-Willi genomic region of chromosome 15.

"What characterizes this chromosomal region is that paternal genes are active, while the maternal genes are inactive. And while most people would have one normal working and one silenced set of these genes, people with Prader-Willi syndrome have only a defective set (the paternal one) and a silenced (maternal) set," explains Stelzer.

In order to achieve a greater understanding of this process, the Hebrew University investigators created a model for the Prader-Willi syndrome by reprogramming skin cells from PWS patients into embryonic-like cells. Utilizing this system, the investigators have shown that the genes expressed from the father are actually affecting and silencing the genes that are expressed from the mother. These findings have significance in the way that we view parental imprinting and in particular the molecular basis of Prader-Willi syndrome, the scientists say.

Future research should allow further characterization of the contribution of this novel genetic region to the origin of this disease, and perhaps pave the way for identification of possible treatment and characterization of PWS patients. Furthermore, the identification of functional, genomic cross-talk in regions containing parental imprinted genes may significantly change our overall understanding of the evolution of this phenomenon in placental mammals, say the researchers.


'/>"/>

Contact: Dov Smith
dovs@savion.huji.ac.il
972-258-82844
The Hebrew University of Jerusalem
Source:Eurekalert  

Related biology news :

1. New towns going up in developing nations pose major risk to the poor
2. Academy of Natural Sciences receives major grant for program to protect drinking water
3. Major breakthrough in stem cell manufacturing technology
4. Climate engineering: Minor potential, major side effects
5. Graduate student makes major discovery about seal evolution
6. First biological marker for major depression could enable better diagnosis and treatment
7. From artificial to natural, the food industry makes a major shift
8. Cambridge and Norwich win major boost for synthetic biology
9. Big-headed fossil flies track major ecological revolution
10. Academy honors 15 for major contributions to science
11. Fast food not the major cause of rising childhood obesity rates
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Major breakthrough in understanding Prader-Willi Syndrome, a parental imprinting disorder
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/14/2016)... AVIV, Israel , April 14, 2016 ... Behavioral Authentication and Malware Detection, today announced the appointment ... already assumed the new role. Goldwerger,s leadership ... BioCatch, on the heels of the deployment of its ... addition, BioCatch,s behavioral biometric technology, which discerns unique cognitive ...
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... May 4, 2016 According to ... "Metabolomics Market - Global Industry Analysis, Size, Share, Growth, ... is anticipated to expand at a CAGR of 17.1% ... by 2024. Metabolomics is the extensive study ... biofluids, tissues or organisms. Together, these small molecules and ...
(Date:5/3/2016)... 3, 2016 The ... Discovery, Gene Expression) Lab-on-a-chip (IVD & POC, ... Diagnostics Centers), Fabrication Technology (Microarrays, Microfluidics) - ... market is expected to reach USD 17.75 ... in 2015, growing at a CAGR of ...
(Date:5/3/2016)... ... May 03, 2016 , ... Leading CEOs from biotech, pharmaceutical, ... and June 1st at The Four Seasons Hotel Boston. , The Boston CEO ... offering exclusive access to key decision makers who influence deal making and investment. ...
(Date:5/3/2016)... ... May 03, 2016 , ... Wearable Tech + Digital ... will take place on June 7-8, 2016, at the New York Academy of Sciences.  ... technology -- including AR/VR, machine learning, apps, robotics and AI -- throughout a major ...
Breaking Biology Technology: