Navigation Links
Mainz scientists confirm original tetrahedral model of the molecular structure of water
Date:2/12/2013

Researchers at Johannes Gutenberg University Mainz (JGU) have confirmed the original model of the molecular structure of water and have thus made it possible to resolve a long-standing scientific controversy about the structure of liquid water. The tetrahedral model was first postulated nearly 100 years ago and it assumes that every water molecule forms a so-called hydrogen bond with four adjacent molecules. This concept was almost toppled in 2004 when an international research group announced that it had experimentally established that water molecules form bonds only with two other molecules. "The quality of the results was excellent but they merely represent a snapshot of the situation," explained Professor Dr. Thomas Khne. He has demonstrated the fallacy of the 'double bonding' theory using computer simulations based on new types of combinations of two computational methods recently developed by his group.

Some very special and unique features of water, such as its liquid aggregate state and high boiling point, are attributable to the effect of the hydrogen bonds between the water molecules. The H bonds are formed due to the different charges carried by the oxygen and hydrogen atoms that make up water molecules and the resultant dipolar structure. The traditional, generally accepted view was that water had a tetrahedral structure at room temperature, so that on average each water molecule would be linked with four adjacent molecules via two donor and two acceptor bonds. "In our theoretical approach, the median result we observed over time was always for quadruple bonding," said Khne. Thanks to the new simulations, he and his colleague Dr. Rhustam Khaliullin have now been able to confirm the old model and also supply an explanation for why double bonding was observed in 2004. According to Khne, the result was not indicative of double bonding "but of instantaneous asymmetrical fluctuation" only.

There is thus significant asymmetry in the four H bonds of the tetrahedral model because of the different energy of the contacts. This asymmetry is the result of temporary disruptions to the hydrogen bond network, which take the form of extremely short term fluctuations occurring on a timescale of 100 to 200 femtoseconds. These fluctuations mean that one of the two donor or acceptor bonds is temporarily much stronger than the other. But these fluctuations precisely cancel each other out so that, on average over time, the tetrahedral structure is retained.

The results reported in 2004 using x-ray absorption spectroscopy were obtained using water molecules with high levels of momentary asymmetry, which is why essentially only two strong hydrogen bonds were observed in an otherwise tetrahedral structure. "Our findings have important implications as they help reconcile the symmetric and asymmetric views on the structure of water," write the scientists in an article published in Nature Communications. The results may also be relevant to research into molecular and biological systems in aqueous solutions and provide insight into protein folding, for example.


'/>"/>
Contact: Junior Professor Dr. Thomas D. Khne
kuehne@uni-mainz.de
49-613-139-23699
Johannes Gutenberg Universitaet Mainz
Source:Eurekalert

Related biology news :

1. Mainz University Medical Center attracts funding of Alexander von Humboldt Professorship
2. Mainz University coordinates new EU project on the origins of human settlement
3. Scientists from Bangalore and Mainz develop new methods for cooling of ions
4. Mainz University Medical Center agrees partnership with Yale University
5. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
6. Queens scientists seek vaccine for Pseudomonas infection
7. Scientists produce eye structures from human blood-derived stem cells
8. American Society of Plant Biologists honors early career women scientists
9. Brandeis scientists win prestigious prize for circadian rhythms research
10. Scientists discover new method of proton transfer
11. Salk scientists open new window into how cancers override cellular growth controls
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... India , April 28, 2016 ... Infosys (NYSE: INFY ), and Samsung SDS, a ... that will provide end customers with a more secure, ... services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... services, but it also plays a fundamental part in enabling ...
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... ... May 02, 2016 , ... ... clients in mind, the fresh look and added functionality give the agricultural world ... have seen a dynamic shift in agriculture – from precision farming via satellites ...
(Date:5/2/2016)... ... 2016 , ... StarNet Communications Corp, ( http://www.starnet.com/ ) a leading publisher of ... Desktop modules to its flagship X-Win32 PC X server. The new modules enable ... user’s PC over encrypted SSH. , Traditionally, users of PC X servers deploy the ...
(Date:5/2/2016)... ... 02, 2016 , ... F.E.E.D. Co., the Feline Environmental Enrichment ... veterinarian-designed product for indoor cats. The NoBowl Feeding System replaces the bowl with ... way nature intended. NoBowls make cats happy and healthy. , Since being introduced ...
(Date:4/29/2016)... Como, Italy (PRWEB) , ... April 30, 2016 , ... ... their extraordinary textile design, the bioLogic team explored how bacterial properties can be applied ... ways of using Natto bacteria, which move in response to humidity change. The team ...
Breaking Biology Technology: