Navigation Links
Maintaining the brain's wiring in aging and disease
Date:12/5/2008

Researchers at the Babraham Institute near Cambridge, supported by the Alzheimer's Research Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), have discovered that the brain's circuitry survives longer than previously thought in diseases of ageing such as Alzheimer's disease. The findings were published today in the journal Brain.

Alzheimer's disease causes nerve cells in the brain to die, resulting in problems with memory, speech and understanding. Little is known about how the nerve cells die, but this new research has revealed how they first lose the ability to communicate with each other, before deteriorating further.

"We've all experienced how useless a computer is without broadband. The same is true for a nerve cell (neuron) in the brain whose wiring (axons and dendrites) has been lost or damaged," explained Dr Michael Coleman the project's lead researcher. "Once the routes of communication are permanently down, the neuron will never again contribute to learning and memory, because these 'wires' do not re-grow in the human brain."

But axons and dendrites are much more than inert fibre-optic wires. They are homes to the world's smallest transport tracks. Every one of our hundred billion nerve cells continuously shuttles hundreds of proteins and intracellular packages out along its axons and dendrites, and back again, during every minute of every day. Without this process, the wires cannot be maintained and the nervous system will cease to function within a few hours.

During healthy ageing this miniature transport system undergoes a steady decline, but the challenges are immense. Axons up a metre long have to survive and function for at least eight or nine decades. Over this period, our homes will need rewiring several times, but in our brains the wires are all original, surviving from childhood. In Alzheimer's disease, axons swell dramatically, ballooning to 10 or 20 times their normal diameter. These swellings disrupt transport but not, it seems, completely. Enough material gets through the swellings to keep more distant parts of the axon alive for at least several months, and probably for a year or more. This is important because it suggests a successful therapy applied during this early period may not only halt the symptoms, but allow a degree of functional recovery.

"We've been able to look at whole nerve cells affected by Alzheimer's", said Dr Michael Coleman. "For the first time we have shown that supporting parts of nerve cells are alive, and we can now learn how to intervene to recover connections. This is very important for treatment because in normal adult life, nerve cell connections constantly disappear and reform, but can only do so if the supporting parts of the cell remain. Our results suggest a time window in which damaged connections between brain cells could recover under the right conditions."

This basic research gives hope over the longer term to the 700,000 people in the UK who live with dementia. Understanding how the brain responds to disease also tells us a lot about how it functions in all of us.


'/>"/>

Contact: Dr. Claire Cockcroft
claire.cockcroft@bbsrc.ac.uk
44-01-223-496-260
Biotechnology and Biological Sciences Research Council
Source:Eurekalert

Related biology news :

1. Niacins role in maintaining good cholesterol
2. The satellite navigation in our brains
3. Big brains arose twice in higher primates
4. Brains R Us: Neuroscience and education town hall
5. From brains to behavior: Cold Spring Harbor Protocols features methods for neuroscience research
6. Doctors learn to control their own brains pain responses to better treat patients
7. Managing carbon loss
8. UNC expands brain imaging study of infants at risk for autism
9. Ants may help researchers unlock mysteries of human aging process
10. £20 million to fight virtual crime and treat our aging population
11. UNC study: Text messaging may help children fight off obesity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... 4, 2017   EyeLock LLC , a leader ... United States Patent and Trademark Office (USPTO) has issued ... linking of an iris image with a face image ... the company,s 45 th issued patent. ... timely given the multi-modal biometric capabilities that have recently ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 21, 2017 , ... Building on the success of the inaugural ... on the very latest developments in radical life extension. RAADfest combines cutting edge science ... the empowerment of personal development, making it the largest most comprehensive and inclusive super ...
(Date:6/22/2017)... CA (PRWEB) , ... June 22, 2017 , ... ... global health leaders in designating infertility as a disease, bringing new hope for ... week at their 2017 annual meeting to back the World Health Organization’s designation ...
(Date:6/22/2017)... ... June 22, 2017 , ... Tunnell Consulting’s ... and life sciences industries, continue to be in demand for their insights and ... be speaking on “The State of Information Governance in the Biopharmaceutical Industry” at ...
(Date:6/22/2017)... ... June 22, 2017 , ... ... the release of Limfinity® version 6.5, a content-packed update to the Limfinity® framework. ... gain a larger and more diverse base of customers among labs and other ...
Breaking Biology Technology: