Navigation Links
MU researcher leads new $6.6 million study that could lead to better corn plants
Date:3/14/2011

COLUMBIA, Mo. Plants harvest energy through the process of photosynthesis, using sunlight to produce sugars. However, little is known about the genes that regulate the transport of sugars to build different parts of the plant. Now, a University of Missouri researcher has received a $6.6 million grant from the National Science Foundation to lead a research team to study the genes that control the movement of carbohydrates in corn.

This research may lead to increased yield, more drought resistant plants, larger plants and easier production of biofuels.

"When corn produces carbohydrates in the leaves, it transports sucrose, a type of sugar, to other parts of the plant, including the ears and roots," said David Braun, an associate professor in the Division of Biological Sciences in the College of Arts and Science and a member of the MU Interdisciplinary Plant Group. "By understanding how the movement of carbohydrates is regulated, we may be able to engineer plants that better meet the needs of farmers and consumers."

Braun said that the carbohydrate transport process for corn is similar to a highway system. Sucrose produced in leaves travels "down the road" toward an eventual exit, but it has points where the traffic does not flow properly and the "exit ramp traffic" backs-up into the roadway. Braun plans to find these bottlenecks, so future research can focus on increasing traffic flow towards these "exit ramps," such as the root system or ears of the plant. Getting more energy to these plant organs may enable the plant to grow larger or hardier.

In the future, researchers may be able to use this knowledge to engineer plants with certain qualities. For example, researchers could attempt to improve carbohydrate flow to ears to increase yield, or to the roots to make the plant more drought resistant.

"Carbohydrate transport is one of the least understood but most important factors in plant development," Braun said. "This research has the potential to have a great effect on corn farming, not just for increasing yield, but on so many other aspects."

Braun thinks this research also may enhance the production of biofuels. In addition to carbohydrates being transported throughout the plant for growth, some sugar is converted to cellulose, an organic compound that comprises the plant cell walls. Cellulose is more difficult for processers to convert into biofuel than sucrose. Braun thinks this research may indicate ways that plants could be modified to store more of the carbohydrate as sucrose. With more sucrose in the plant, biofuels could become cheaper to produce and consumers might experience lower prices, leading to increased use.

Braun leads a team of researchers from the University of Florida, Purdue University, the University of Nebraska-Lincoln, and St. Michael's College in Vermont. Funding for the project was provided by a grant from the Plant Genome Research Program of the National Science Foundation.


'/>"/>

Contact: Steven Adams
AdamsST@missouri.edu
573-882-8353
University of Missouri-Columbia
Source:Eurekalert  

Related biology news :

1. U of A researcher questions whether genius might be a result of hormonal influences
2. Brandeis researchers use lasers, custom microscope to show gene splicing process in real time
3. Synthetic biology: TUM researchers develop novel kind of fluorescent protein
4. Researchers find drug that stops progression of Parkinsons disease in mice
5. Researchers discover new wintering grounds for humpback whales using sound
6. Iowa State, Ames Lab researcher hunts for green catalysts
7. University of Missouri researcher study provides insight into how corn makes hormones
8. Berkeley Lab researchers illuminate laminins role in cancer formation
9. Virginia Tech researcher seeks to use electrical stimulation to give voice to stroke patients
10. Researchers discover new shapes of microcompartments
11. Researchers find possible new treatment strategies for pancreatic cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
MU researcher leads new $6.6 million study that could lead to better corn plants
(Date:3/21/2016)... March 22, 2016 Unique ... passcodes for superior security   ... provider of secure digital communications services, today announced it ... and offer enterprise customers, particularly those in the Financial ... and voice authentication within a mobile app, alongside, and ...
(Date:3/15/2016)... 15, 2016 --> ... Transparency Market Research "Digital Door Lock Systems Market - Global ... 2023," the global digital door lock systems market in terms ... and is forecast to grow at a CAGR of 31.8% ... and medium enterprises (MSMEs) across the world and high industrial ...
(Date:3/14/2016)... http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ( ... --> DERMALOG, le leader de l,innovation ... d,empreintes digitales pour l,enregistrement des réfugiés en Allemagne. ... produire des cartes d,identité aux réfugiés. DERMALOG dévoilera ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... City, Missouri (PRWEB) , ... May 04, 2016 , ... ... of Professional and Agricultural Sales. , Doug began his career at PBI-Gordon in ... since served in a wide variety of roles, ranging from customer service to national ...
(Date:5/3/2016)... (PRWEB) , ... May 03, 2016 , ... In a ... 25 out of the state’s 76 fastest-growing private companies; a small percentage of the ... and ranked organizations on the percent change in revenue from 2012 to 2015. ...
(Date:5/3/2016)... ... 03, 2016 , ... Wearable Tech + Digital Health ... take place on June 7-8, 2016, at the New York Academy of Sciences.  , ... -- including AR/VR, machine learning, apps, robotics and AI -- throughout a major health ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... and IVF laboratories. A contingency of reproductive endocrinologists, including Dr. George Hill ... experiencing infertility and to help them build families. , Ovation Fertility is a ...
Breaking Biology Technology: