Navigation Links
MU researcher leads new $6.6 million study that could lead to better corn plants
Date:3/14/2011

COLUMBIA, Mo. Plants harvest energy through the process of photosynthesis, using sunlight to produce sugars. However, little is known about the genes that regulate the transport of sugars to build different parts of the plant. Now, a University of Missouri researcher has received a $6.6 million grant from the National Science Foundation to lead a research team to study the genes that control the movement of carbohydrates in corn.

This research may lead to increased yield, more drought resistant plants, larger plants and easier production of biofuels.

"When corn produces carbohydrates in the leaves, it transports sucrose, a type of sugar, to other parts of the plant, including the ears and roots," said David Braun, an associate professor in the Division of Biological Sciences in the College of Arts and Science and a member of the MU Interdisciplinary Plant Group. "By understanding how the movement of carbohydrates is regulated, we may be able to engineer plants that better meet the needs of farmers and consumers."

Braun said that the carbohydrate transport process for corn is similar to a highway system. Sucrose produced in leaves travels "down the road" toward an eventual exit, but it has points where the traffic does not flow properly and the "exit ramp traffic" backs-up into the roadway. Braun plans to find these bottlenecks, so future research can focus on increasing traffic flow towards these "exit ramps," such as the root system or ears of the plant. Getting more energy to these plant organs may enable the plant to grow larger or hardier.

In the future, researchers may be able to use this knowledge to engineer plants with certain qualities. For example, researchers could attempt to improve carbohydrate flow to ears to increase yield, or to the roots to make the plant more drought resistant.

"Carbohydrate transport is one of the least understood but most important factors in plant development," Braun said. "This research has the potential to have a great effect on corn farming, not just for increasing yield, but on so many other aspects."

Braun thinks this research also may enhance the production of biofuels. In addition to carbohydrates being transported throughout the plant for growth, some sugar is converted to cellulose, an organic compound that comprises the plant cell walls. Cellulose is more difficult for processers to convert into biofuel than sucrose. Braun thinks this research may indicate ways that plants could be modified to store more of the carbohydrate as sucrose. With more sucrose in the plant, biofuels could become cheaper to produce and consumers might experience lower prices, leading to increased use.

Braun leads a team of researchers from the University of Florida, Purdue University, the University of Nebraska-Lincoln, and St. Michael's College in Vermont. Funding for the project was provided by a grant from the Plant Genome Research Program of the National Science Foundation.


'/>"/>

Contact: Steven Adams
AdamsST@missouri.edu
573-882-8353
University of Missouri-Columbia
Source:Eurekalert  

Related biology news :

1. U of A researcher questions whether genius might be a result of hormonal influences
2. Brandeis researchers use lasers, custom microscope to show gene splicing process in real time
3. Synthetic biology: TUM researchers develop novel kind of fluorescent protein
4. Researchers find drug that stops progression of Parkinsons disease in mice
5. Researchers discover new wintering grounds for humpback whales using sound
6. Iowa State, Ames Lab researcher hunts for green catalysts
7. University of Missouri researcher study provides insight into how corn makes hormones
8. Berkeley Lab researchers illuminate laminins role in cancer formation
9. Virginia Tech researcher seeks to use electrical stimulation to give voice to stroke patients
10. Researchers discover new shapes of microcompartments
11. Researchers find possible new treatment strategies for pancreatic cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
MU researcher leads new $6.6 million study that could lead to better corn plants
(Date:3/15/2016)... 2016 Yissum Research Development Company of ... of the Hebrew University, announced today the formation of ... of various human biological indicators. Neteera Technologies has completed ... private investors. ... of electromagnetic emissions from sweat ducts, enables reliable and ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ) - ... ( http://www.apimages.com ) - Germany . The ... refugee identity cards. DERMALOG will be unveiling this device, and a ... next week.   --> Germany . ... new refugee identity cards. DERMALOG will be unveiling this device, and ...
(Date:3/10/2016)... 2016   Unisys Corporation (NYSE: UIS ) ... (CBP) is testing its biometric identity solution at the Otay ... to help identify certain non-U.S. citizens leaving the country. ... to help determine the efficiency and accuracy of using biometric ... will run until May 2016. --> the ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... Jersey and READING, England ... Indegene ( http://www.indegene.com ), a leading global ... life science, pharmaceutical and healthcare organisations and TranScrip ... innovative scientific support throughout the product lifecycle, today ... the launch of IntraScience.      (Logo: ...
(Date:5/26/2016)... ... May 26, 2016 , ... FireflySci has ... in leading laboratories all over the globe. Their cute firefly logo has been ... awesome cuvettes, FireflySci makes spectrophotometer calibration standards that never require recalibration. These ...
(Date:5/25/2016)... ... May 25, 2016 , ... ... (RFI) issued by the Office of the National Coordinator for Health IT (ONC) ... determines if clinically relevant data were available when and where it was needed. ...
(Date:5/24/2016)... ... May 24, 2016 , ... Cell therapies for a ... accelerated by research at Worcester Polytechnic Institute (WPI) that yielded a newly patented ... regeneration. , The novel method, developed by WPI faculty members Raymond Page, PhD, ...
Breaking Biology Technology: