Navigation Links
MU research sheds light on nerve regeneration following spinal cord injury
Date:11/21/2013

COLUMBIA, Mo. Fish, unlike humans, can regenerate nerve connections and recover normal mobility following an injury to their spinal cord. Now, University of Missouri researchers have discovered how the sea lamprey, an eel-like fish, regrows the neurons that comprise the long nerve "highways" that link the brain to the spinal cord. Findings may guide future efforts to promote recovery in humans who have suffered spinal cord injuries.

"There is a lot of attention to why, following a spinal cord injury, neurons regenerate in lower vertebrates, such as the sea lamprey, and why they don't in higher vertebrates, such as humans," said Andrew McClellan, professor of biological sciences in the College of Arts and Science and director of the MU Spinal Cord Injury Program.

The study focuses on the regrowth of a particular group of nerve cells called reticulospinal neurons, which are necessary for locomotion. These neurons are found in the hindbrain, or the brainstem, and send signals to the spinal cord of all vertebrates to control movements of the body, such as locomotor behavior. When these nerve cells are damaged by a spinal cord injury, the animal is unable to move below the level of injury. While humans and other higher vertebrates would be permanently paralyzed, the sea lamprey and other lower vertebrates have the ability to regrow these neurons and recover the ability to move within a few short weeks.

In the study, McClellan and his colleagues isolated and removed injured reticulospinal neurons from sea lamprey and grew them in cultures. They applied chemicals that activated a group of molecules, called second messengers, to see what effects they had on these neurons' growth. They discovered that activation of cyclic AMP, a molecule that relays chemical signals inside cells, acted somewhat like an "on" switchessentially converting neurons from a non-growing state to a growing one. However, it had no effect on neurons that had already begun to grow.

McClellan says that the information learned from the study may shed light on studies of neural regeneration in mammals, including humans.

"In mammals, cyclic AMP does appear to enhance neural regeneration within the central nervous system in an environment that normally inhibits regeneration," McClellan said. "Cyclic AMP seems to be able to overcome some of these inhibitory factors and promotes at least some regeneration. Hopefully our studies with the lamprey can provide a list of conditions that are important for neural regeneration to help guide therapies in higher vertebrates, and possibly in humans."


'/>"/>

Contact: Jeff Sossamon
sossamonj@missouri.edu
573-882-3346
University of Missouri-Columbia
Source:Eurekalert  

Related biology news :

1. Researchers gain fuller picture of cell protein reactions
2. Scripps oceanography researchers engineer breakthrough for biofuel production
3. USF researchers show invasive sparrows immune cells sharpen as they spread
4. Researchers use CT and 3-D printers to recreate dinosaur fossils
5. Natural compound mitigates effects of methamphetamine abuse, University of Missouri researchers find
6. Researchers classify urban residential desert landscapes
7. Researchers test effects of LEDs on leaf lettuce
8. Researchers develop new approach to identify possible ecological effects of releasing genetically engineered insects
9. Researchers capture structure of key part of deadly Nipah virus
10. Researchers identify main genes responsible for asthma attacks in children
11. Bait research focused on outsmarting destructive beetle
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
MU research sheds light on nerve regeneration following spinal cord injury
(Date:2/7/2017)... , Feb. 7, 2017   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... , its innovative, highly flexible and award winning eClinical ... customers. iMedNet is a proven Software-as-a-Service (SaaS) ... Data Capture (EDC), but also delivers an entire suite ...
(Date:2/3/2017)... Biomedical Research Institute announced that its Board of Trustees has ... Institute,s new President and CEO. Dr. Schlesinger will take the ... currently the Chair of the Department of Microbial Infection and ... at Ohio State University. "We are delighted to ... Texas Biomed," said Dr. James O. Rubin , Board ...
(Date:2/2/2017)... Feb. 1, 2017  Central to its deep ... advances worldwide, The Japan Prize Foundation today announced ... have pushed the envelope in their respective fields ... Three scientists are being recognized with the 2017 ... not only contribute to the advancement of science ...
Breaking Biology News(10 mins):
(Date:2/17/2017)... , Feb. 17, 2017  If only ... tumor had a mutation-conferring resistance to chemotherapy, thousands ... genomics research has focused on finding these mutations ... even from circulating tumor DNA in blood — ... oncology therapeutics. Unfortunately, however, detecting these ...
(Date:2/16/2017)... ... 2017 , ... Avomeen & MichBio will be hosting a BioMixer next week ... Analytical Services (4840 Venture Dr., Ann Arbor, Michigan 48108). BioMixers are a casual, ... interact with peers, make new connections and talk bio biz. , Cost:, ...
(Date:2/16/2017)... , Feb. 16, 2017  ArmaGen, Inc., ... groundbreaking therapies to treat severe neurological disorders, today ... treated with AGT-181, the company,s investigational therapy for ... known as mucopolysaccharidosis type I, or MPS I). ... proof-of-concept (POC) study, presented today at the 13 ...
(Date:2/16/2017)... 16, 2017 Patient Care ... innovative telemedicine application, new and leading edge therapies ... a boom worldwide. The healthcare sector as whole ... services and new therapies for companies such as ... Cellectar Biosciences, Inc. (NASDAQ: CLRB ), ...
Breaking Biology Technology: