Navigation Links
MSU researcher identifies cell mechanism leading to diabetic blindness

EAST LANSING, Mich. Scientists have long known that high blood sugar levels from diabetes damage blood vessels in the eye, but they didn't know why or how. Now a Michigan State University scientist has discovered the process that causes retinal cells to die, which could lead to new treatments that halt the damage.

Diabetic retinopathy is a common side effect of diabetes and the leading cause of blindness in young adults in the United States. It's estimated that between 40 percent and 45 percent of people diagnosed with diabetes have some degree of diabetic retinopathy.

Research by Susanne Mohr, MSU associate professor of physiology, found the siah-1 protein is produced by the body when blood sugar levels are high. She then discovered that the siah-1 protein serves as a type of chauffeur for another protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), shuttling the GAPDH into the nucleus of Mller cells, special cells that have contact with the blood vessels in the eye. When GAPDH accumulates in their nuclei, the Mller cells die, which leads to the vascular damage associated with diabetic retinopathy.

The research is published in the Jan. 29 issue of the Journal of Biological Chemistry.

"Our earlier research showed that high glucose levels cause GAPDH to accumulate in the nuclei of Mller cells in the retina," Mohr explained. "But we weren't sure how the GAPDH was getting in there. It doesn't contain any of the necessary signaling motifs. I read about the siah-1 protein and cell death in white blood cells in a Nature paper, so we decided to investigate them. We had no idea if the siah-1 protein was even in the retina."

Mohr's research also found that lowering levels of siah-1 proteins stopped GAPDH from moving into the nuclei of Mller cells, which stopped them from dying.

"This is very exciting," Mohr said. "We know that we can't regulate production of GAPDH because it's necessary for producing energy throughout the body. But since siah-1 is produced only when glucose levels are high, regulating it doesn't cause any problems. If we can figure out how to stop siah-1 production, it may lead to new treatments for diabetic retinopathy."

Mohr explained that stopping GAPDH from moving into Mller cell nuclei is important to halting the progress of diabetic retinopathy. Even after glucose levels are lowered and stabilized in diabetics, GAPDH continues to accumulate in Mller cell nuclei. So the retinal damage keeps worsening, just more slowly.

"If we can keep GAPDH out of the nuclei, we may be able to completely stop diabetic retinopathy," Mohr said. "Our next step is to figure out if both the GAPHD and the siah-1 proteins have to be together in a complex to cause cell death."


Contact: Jamie DePolo
Michigan State University

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
6. U of MN researchers discover noninvasive diagnostic tool for brain diseases
7. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
8. Researchers discover new strategies for antibiotic resistance
9. Researchers find new taste in fruit flies: carbonated water
10. Binghamton University researchers investigate evolving malaria resistance
11. Antioxidant to retard wrinkles discovered by Hebrew University researcher
Post Your Comments:
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
(Date:10/29/2015)... RESTON, Va. , Oct. 29, 2015 ... announced today that it has released a new version ... Daon customers in North America ... gains. IdentityX v4.0 also includes a FIDO UAF ... customers are already preparing to activate FIDO features. These ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... KUALA LUMPUR, Malaysia , Nov. 24, 2015 ... the global contract research organisation (CRO) market. The ... to result in lower margins but higher volume ... With increased capacity and scale, however, margins in ... Contract Research Organisation (CRO) Market ( ...
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be presenting at ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. PT ... provide a corporate overview. th Annual Oppenheimer Healthcare ... ET/10:00 a.m. PT . Jim Mazzola , vice president ... --> th Annual Oppenheimer Healthcare Conference in ...
(Date:11/24/2015)... ... 24, 2015 , ... International Society for Pharmaceutical Engineering (ISPE) ... annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in ... largest number of attendees in more than a decade. , “The 2015 ...
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
Breaking Biology Technology: