Navigation Links
MSU research may lead to new ways to control honeybee parasite
Date:12/9/2009

EAST LANSING, Mich. Ground-breaking discoveries by Michigan State University researchers could help protect honeybees from deadly parasites that have devastated commercial colonies.

The MSU researchers for the first time were able to produce in the laboratory proteins that help channel sodium ions through cell membranes of parasites known as Varroa mites. The research, using cellular frog eggs, also found that these proteins react to chemicals differently than the sodium channel proteins in honeybees, a finding that could be a key to controlling the mites.

"The insecticide used to control Varroa mites, fluvalinate, targets the mite sodium channel," said Ke Dong, MSU professor of entomology. "But the mites are becoming resistant to fluvalinate. Successfully producing the mite sodium channel in the lab now allows scientists to develop new chemicals that target the mite sodium channel but don't affect the honeybee's."

Fluvalinate paralyzes the mite and eventually kills it. But in addition to the problem of growing mite resistance, the pesticide can harm bees and contaminate honey if not used extremely carefully.

The MSU scientists also found two amino acids in the mite sodium channel that make the mite resistant to tetrodotoxin, or TTX, a deadly poison found in pufferfish not currently used as an insecticide

"Chemicals such as fluvalinate and TTX target sodium channels in insects and mites, so this basic research opens the door for more applied research on chemicals to control mites and other pest insects," Dong said.

Other members of the MSU team are Yuzhe Du, senior research associate; Yoshiko Nomura, visiting scholar; Zhiqi Liu, former research associate; and Zachary Huang, associate professor, all in the Department of Entomology.

Varroa mites invaded the United States from the eastern hemisphere in 1987 and can kill an entire honeybee colony within a year, feeding on bee blood and transmitting viruses. The mites wiped out nearly 50 percent of the U.S. commercial honeybee population in 2004.

Varroa mites also may possibly contribute to colony collapse disorder, or CCD, according to the U.S. Department of Agriculture. First described in 2006, CCD is the official name for the disappearance of hundreds of thousands of bees from hives around the world. Scientists have not been able to find a cause.

"These mites are a big, big problem for agriculture," Huang said. "Nearly 80 percent of food crops depend on pollination."

In Michigan, fruit and vegetable crops valued at $400 million depend on honeybee pollination and honey and beeswax add another $5 million to the state's economy each year. Nationwide, bee pollination is responsible for $15 billion in added crop value, particularly for specialty crops such as almonds and other nuts, berries, fruits and vegetables, according to the USDA. It's estimated that one out of every three bites of food people eat is made possible by pollination.


'/>"/>

Contact: Jamie DePolo
depolo@msu.edu
609-354-8403
Michigan State University
Source:Eurekalert  

Related biology news :

1. University of the Basque Country research on plankton at Urdaibai
2. Carnegie Mellon researchers receive grant
3. MSU researcher unveils new approach to treat lower back pain
4. Researchers finds hidden sensory system in the skin
5. Researchers demonstrate nanoscale X-ray imaging of bacterial cells
6. AACR names Perou 2009 Outstanding Investigator for Breast Cancer Research
7. Einstein receives high-risk/high-reward cancer research funding
8. Stand Up to Cancer funds high-risk/high-reward cancer research by 13 young scientists
9. Texas AgriLife researchers helping
10. U-Iowa study helps advance heart-related research
11. Stopping MRSA before it becomes dangerous is possible, Sandia/UNM researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
MSU research may lead to new ways to control honeybee parasite
(Date:6/22/2016)... Md. , June 22, 2016  The American College ... Trade Show Executive Magazine as one of the ... on May 25-27 at the Bellagio in Las ... on the highest percentage of growth in each of the ... of exhibiting companies and number of attendees. The 2015 ACMG ...
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/15/2016)... 2016 Transparency Market Research ... Market by Application Market - Global Industry Analysis Size Share ... the report, the  global gesture recognition market  was ... is estimated to grow at a CAGR of ... Increasing application of gesture recognition technology ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... DrugDev believes the only way ... beautiful technology experience. All three tenets were on display at the 2nd Annual DrugDev ... over 40 sponsor, CRO and site organizations to discuss innovation and the future of ...
(Date:12/2/2016)... 2, 2016 The immunohistochemistry (IHC) market ... a CAGR of 7.3% during the forecast period of 2016 to ... laboratories segment accounted for the largest share of immunohistochemistry (IHC) market, ... , ... immunohistochemistry (IHC) market spread across 225 pages, profiling 10 companies and ...
(Date:11/30/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... excited to announce the formation of EyGen, Ltd. ... ophthalmology assets through proof of concept. EyGen,s lead ... Portage Pharmaceuticals Limited and being developed for topical ... anterior segment diseases. This agent has the potential ...
(Date:11/30/2016)... SAN DIEGO and BEIJING ... Ltd., a leading commercial provider of genomic services and ... expertise, announced today that it has completed a USD ... China Merchants Bank Co., Ltd.,s CMB International Capital Management ... SDIC Innovation Investment Management Co., Ltd. ("SDIC Innovation") and ...
Breaking Biology Technology: