Navigation Links
MSU discoveries upend traditional thinking about how plants make certain compounds
Date:5/26/2009

EAST LANSING, Mich. Michigan State University plant scientists have identified two new genes and two new enzymes in tomato plants; those findings led them to discover that the plants were making monoterpenes, compounds that help give tomato leaves their distinctive smell, in a way that flies in the face of accepted thought.

Such research could help researchers find new ways to protect plants from pests.

Based on years of research, scientists thought that plants always used a specific compound, geranyl diphosphate, to make monoterpenes. But MSU biochemistry and molecular biology scientists Anthony Schilmiller and Rob Last were part of a research team that has found that tomato plants use a different compound, neryl diphosphate, as the substrate for making monoterpenes. The difference is subtle, but the discovery will change the way terpene (compounds that are responsible for the taste and smell of many plants) research is done. The research is published in the May 25 issue of the Proceedings of the National Academy of Sciences.

"Essentially, this work subverts the dominant paradigm about an important and widespread pathway in plants," Last explained. "For years it was known that monoterpenes are made in a specific way. But there were cases where that pathway likely wasn't involved, given the kinds of compounds found in specific plants. We showed that in tomato trichomes (small hair cells located mainly on the plant's leaves and stems), the established pathway is wrong. In the tomato trichome, two enzymes work together to make the monoterpenes in a previously unsuspected way."

The two newly identified genes, neryl diphosphate synthase 1 (NDPS1) and phellandrene synthase 1 (PHS1), cause the tomato plant to make the new enzymes that produce the monoterpenes.

As the team was sequencing the DNA of tomato trichomes, Schilmiller and Eran Pichersky, of the University of Michigan, noticed that there were many sequences from genes that weren't supposed to be involved in monoterpene production. Because the sequences were found so frequently, they hypothesized the genes must be making high levels of compounds in the trichome.

"We had to think outside the box to figure out what the function of NDPS1 and PHS1 were," Schilmiller said. "Our colleagues at the University of Michigan, Eran Pichersky and Ines Schauvinhold, were instrumental in coming up with theories and running the assays."

Terpenes are the largest class of molecules made by plants tens of thousands of different terpenes have been identified. Some of the known functions of terpenes include attracting pollinators, repelling pests and protecting the plant from diseases, as well as giving many plants their smell and taste. The aroma of many leaf spices, such as mint and basil, come from terpenes.

These new discoveries will allow other scientists to look for similar genes in other plants and perhaps discover new enzymes that make monoterpenes, which could lead to new ways to protect plants from pests.


'/>"/>

Contact: Jamie DePolo
depolo@msu.edu
609-354-8403
Michigan State University
Source:Eurekalert

Related biology news :

1. DNA replication behavior in complex organisms may foreshadow leaps in genomic discoveries
2. New discoveries from Harvard and Baylor get to the heart of cardiovascular disease
3. UC and partners awarded $23 million to transform discoveries into real-world health solutions
4. Field stations foster serendipitous discoveries in environmental, biological sciences
5. Study of African traditional medicine will begin world-first clinical trial
6. Balance between traditional activities, tourism key to sustaining coastal Alaska communities
7. Traditional Dutch landscape under threat
8. Stroke Belt deaths tied to non-traditional risk factors
9. Exercise improves thinking, reduces diabetes risk in overweight children
10. Thinking makes it so: Science extends reach of prosthetic arms
11. Case researcher in RNA biology makes waves by challenging current thinking
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... June 27, 2016 Research and Markets has ... 2016-2020" report to their offering. ... America to grow at a CAGR of 12.28% during ... based on an in-depth market analysis with inputs from industry experts. ... the coming years. The report also includes a discussion of the ...
(Date:6/22/2016)... , June 22, 2016  The American College of ... Trade Show Executive Magazine as one of the fastest-growing ... May 25-27 at the Bellagio in Las Vegas ... the highest percentage of growth in each of the following ... exhibiting companies and number of attendees. The 2015 ACMG Annual ...
(Date:6/22/2016)... June 22, 2016   Acuant , ... verification solutions, has partnered with RightCrowd ® ... for Visitor Management, Self-Service Kiosks and Continuous ... that add functional enhancements to existing physical ... and venues with an automated ID verification ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case ... Denmark detail how a patient who developed lymphedema after being treated for breast cancer ... could change the paradigm for dealing with this debilitating, frequent side effect of cancer ...
(Date:6/23/2016)... 23, 2016 Andrew ... http://doi.org/10.17925/OHR.2016.12.01.22 Published recently in ... journal from touchONCOLOGY, Andrew D Zelenetz , ... cancer care is placing an increasing burden on ... biologic therapies. With the patents on many biologics ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... on quality, regulatory and technical consulting, provides a free webinar on ... on July 13, 2016 at 12pm CT at no charge. , Incomplete investigations ...
Breaking Biology Technology: