Navigation Links
MSU discoveries upend traditional thinking about how plants make certain compounds
Date:5/26/2009

EAST LANSING, Mich. Michigan State University plant scientists have identified two new genes and two new enzymes in tomato plants; those findings led them to discover that the plants were making monoterpenes, compounds that help give tomato leaves their distinctive smell, in a way that flies in the face of accepted thought.

Such research could help researchers find new ways to protect plants from pests.

Based on years of research, scientists thought that plants always used a specific compound, geranyl diphosphate, to make monoterpenes. But MSU biochemistry and molecular biology scientists Anthony Schilmiller and Rob Last were part of a research team that has found that tomato plants use a different compound, neryl diphosphate, as the substrate for making monoterpenes. The difference is subtle, but the discovery will change the way terpene (compounds that are responsible for the taste and smell of many plants) research is done. The research is published in the May 25 issue of the Proceedings of the National Academy of Sciences.

"Essentially, this work subverts the dominant paradigm about an important and widespread pathway in plants," Last explained. "For years it was known that monoterpenes are made in a specific way. But there were cases where that pathway likely wasn't involved, given the kinds of compounds found in specific plants. We showed that in tomato trichomes (small hair cells located mainly on the plant's leaves and stems), the established pathway is wrong. In the tomato trichome, two enzymes work together to make the monoterpenes in a previously unsuspected way."

The two newly identified genes, neryl diphosphate synthase 1 (NDPS1) and phellandrene synthase 1 (PHS1), cause the tomato plant to make the new enzymes that produce the monoterpenes.

As the team was sequencing the DNA of tomato trichomes, Schilmiller and Eran Pichersky, of the University of Michigan, noticed that there were many sequences from genes that weren't supposed to be involved in monoterpene production. Because the sequences were found so frequently, they hypothesized the genes must be making high levels of compounds in the trichome.

"We had to think outside the box to figure out what the function of NDPS1 and PHS1 were," Schilmiller said. "Our colleagues at the University of Michigan, Eran Pichersky and Ines Schauvinhold, were instrumental in coming up with theories and running the assays."

Terpenes are the largest class of molecules made by plants tens of thousands of different terpenes have been identified. Some of the known functions of terpenes include attracting pollinators, repelling pests and protecting the plant from diseases, as well as giving many plants their smell and taste. The aroma of many leaf spices, such as mint and basil, come from terpenes.

These new discoveries will allow other scientists to look for similar genes in other plants and perhaps discover new enzymes that make monoterpenes, which could lead to new ways to protect plants from pests.


'/>"/>

Contact: Jamie DePolo
depolo@msu.edu
609-354-8403
Michigan State University
Source:Eurekalert

Related biology news :

1. DNA replication behavior in complex organisms may foreshadow leaps in genomic discoveries
2. New discoveries from Harvard and Baylor get to the heart of cardiovascular disease
3. UC and partners awarded $23 million to transform discoveries into real-world health solutions
4. Field stations foster serendipitous discoveries in environmental, biological sciences
5. Study of African traditional medicine will begin world-first clinical trial
6. Balance between traditional activities, tourism key to sustaining coastal Alaska communities
7. Traditional Dutch landscape under threat
8. Stroke Belt deaths tied to non-traditional risk factors
9. Exercise improves thinking, reduces diabetes risk in overweight children
10. Thinking makes it so: Science extends reach of prosthetic arms
11. Case researcher in RNA biology makes waves by challenging current thinking
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... 2017 Forecasts by Product Type ... by End-Use (Transportation & Logistics, Government & Public Sector, ... Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation ... Are you looking for a definitive report on the ... ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
Breaking Biology News(10 mins):
(Date:7/25/2017)... ... July 25, 2017 , ... ... welcome Chuck Heinz as Executive Director of Strategic Planning. His extensive background ... team. , Chuck’s professional experience encompasses marketing and differentiation consulting, business strategy ...
(Date:7/24/2017)... ... July 24, 2017 , ... ... the stock market news outlet had initiated coverage on Interpace Diagnostics. Interpace ... and identifies exposure, progression and risk analysis from specific cancers in humans. ...
(Date:7/20/2017)... , ... July 20, 2017 , ... VIC Technology ... joining the company’s board of directors. This addition continues to strengthen and diversify ... Calvin Goforth, CEO and Chairman. “He is a highly accomplished business executive with a ...
(Date:7/18/2017)... ... July 18, 2017 , ... ... pharmaceutical and biotherapeutics development, announces the launch of a new NTA biosensor chip ... enables researchers to study the kinetics of polyhistidine-tagged (His-tagged) molecules quickly and reliably. ...
Breaking Biology Technology: