Navigation Links
MIT works toward engineered blood vessels
Date:12/17/2007

CAMBRIDGE, Mass.-MIT scientists have found a way to induce cells to form parallel tube-like structures that could one day serve as tiny engineered blood vessels.

The researchers found that they can control the cells' development by growing them on a surface with nano-scale patterning. A paper on the work was posted this month in an online issue of Advanced Materials.

Engineered blood vessels could one day be transplanted into tissues such as the kidneys, liver, heart or any other organs that require large amounts of vascular tissue, which moves nutrients, gases and waste to and from cells.

"We are very excited about this work, said Robert Langer, MIT Institute Professor and an author of the paper. It provides a new way to create nano-based systems with what we hope will provide a novel way to someday engineer tissues in the human body.

The work focuses on vascular tissue, which includes capillaries, the tiniest blood vessels, and is an important part of the circulatory system. The team has created a surface that can serve as a template to grow capillary tubes aligned in a specific direction.

The researchers built their template using microfabrication machinery at Draper Laboratory in Cambridge. Normally such technology is used to build micro-scale devices, but the researchers adapted it to create nano-scale patterns on a silicone elastomer substrate. The surface is patterned with ridges and grooves that guide the cells' growth.

The cells can sense (the patterns), and they end up elongated in the direction of those grooves, said Christopher Bettinger, MIT graduate student in materials science and engineering and lead author of the paper.

The cells, known as endothelial progenitor cells (EPCs), not only elongate in the direction of the grooves, but also align themselves along the grooves. That results in a multicellular structure with defined edges, also called a band structure.

Once the band structures form, the researchers apply a commonly used gel that induces cells to form three-dimensional tubes. Unlike cells grown on a flat surface, which form a network of capillary tubes extending in random directions, cells grown on the nano-patterned surface form capillaries aligned in the direction chosen by the researchers.

The researchers believe the technique works best with EPCs because they are relatively immature cells. Earlier attempts with other types of cells, including mature epithelial cells, did not produce band structures.

Growing tissue on a patterned surface allows researchers a much greater degree of control over the results than the classic tissue engineering technique of mixing cell types with different growth factors and hoping that a useful type of tissue is produced, said Bettinger.

With this technique, we can take the guesswork out of it, he said.

The next step is to implant capillary tubes grown in the lab into tissues of living animals and try to integrate them into the tissues.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Rain forest protection works in Peru
2. MIT works toward safer gene therapy
3. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
4. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
5. Alternative food networks connect ethical producers and consumers and can lead to healthier eating
6. Workshops on biotechnology and water for science journalists
7. Bursts of waves drive immune system soldiers toward invaders
8. A step toward tissue-engineered heart structures for children
9. Research points towards early cancer detection
10. Researchers take first steps towards spinal cord reconstruction following injury
11. Fish farms drive wild salmon populations toward extinction
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... June 22, 2016 On Monday, the Department ... industry to share solutions for the Biometric Exit Program. ... and Border Protection (CBP), explains that CBP intends to ... the United States , in order ... defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
(Date:6/2/2016)... YORK , June 2, 2016   The Weather ... is announcing Watson Ads, an industry-first capability in which consumers ... by being able to ask questions via voice or text ... Marketers have long sought ... the consumer, that can be personal, relevant and valuable; and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Chapel Hill, N.C. (PRWEB) , ... June 27, ... ... of U.S. commercial operations for Amgen, will join the faculty of the ... will serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is pleased to announce the launch of their brand, UP4™ Probiotics, into Target ... over 35 years, is proud to add Target to its list of well-respected ...
(Date:6/23/2016)... 2016 Houston Methodist Willowbrook Hospital has ... Association to serve as their official health care ... Willowbrook will provide sponsorship support, athletic training services, ... coaches, volunteers, athletes and families. "We ... Association and to bring Houston Methodist quality services ...
Breaking Biology Technology: