Navigation Links
MIT sorts cells with beams of light
Date:12/10/2007

CAMBRIDGE, Mass. Separating out particular kinds of cells from a sample could become faster, cheaper and easier thanks to a new system developed by MIT researchers that involves levitating the cells with light.

The system, which can sort up to 10,000 cells on a conventional glass microscope slide, could enable a variety of biological research projects that might not have been feasible before, its inventors say. It could also find applications in clinical testing and diagnosis, genetic screening and cloning research, all of which require the selection of cells with particular characteristics for further testing.

Joel Voldman, an associate professor in MITs Department of Electrical Engineering and Computer Science, and Joseph Kovac, a student in the department, developed the new system, which is featured as the cover story in the Dec. 15 issue of the journal Analytical Chemistry.

Present methods allow cells to be sorted based on whether or not they emit fluorescent light when mixed with a marker that responds to a particular protein or other compound. The new system allows more precise sorting, separating out cells based not just on the overall average fluorescent response of the whole cell but on responses that occur in specific parts of the cell, such as the nucleus. The system can also pick up responses that vary in how fast they begin or how long they last.

Weve been interested in looking at things inside the cell that either change over time, or are in specific places, Voldman says. Separating out cells with such characteristics cant be done with traditional cell sorting.

For example, if cells differ in how quickly they respond to a particular compound used in the fluorescent labeling, the new system would make it possible to select out the ones that are faster or slower, and see whats different, says Voldman, who also has appointments in MITs Research Laboratory of Electronics and the Microsystems Technology Laboratories.

It seems like that should be easy, but it isnt, he said. There are other ways of accomplishing the same kind of cell separation, but they require complex and expensive equipment, or are limited in the number of cells they can process.

The new system uses a simple transparent silicone layer bonded to a conventional glass microscope slide. Fabricated in the layer are a series of tiny cavities, or traps, in which cells settle out after being added to the slide in a solution. Up to 10,000 cells could be sorted on a single slide.

Looking through the microscope, either a technician or a computerized system can check each cell to determine whether it has fluorescence in the right area or at the right time to meet the selection criteria. If so, its position is noted by the computer. At the end of the selection process, all of the cells whose positions were recorded are then levitated out of their traps using the pressure of a beam of targeted light from a low-cost laser. A flowing fluid then sweeps the selected cells off to a separate reservoir.

The laser levitation of the cells acts like a fire hose pushing up a beach ball, Voldman says. But the laser method is gentle enough that the living cells remain viable after the process is complete, allowing further biological testing.

Voldman and Kovac are continuing to refine the system, working on making it easier to use and on improving its ability to keep samples sterile. Voldman says that unlike expensive separation techniques such as optical tweezers, the new system could cost only a few thousand dollars. As a result, it could be employed in a variety of biological research laboratories or clinical settings, not just in big, centralized testing facilities.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. ESF EURYI award winner aims to stop cancer cells reading their own DNA
2. Newly created cancer stem cells could aid breast cancer research
3. AIDS interferes with stem cells in the brain
4. Clemson scientists shed light on molecules in living cells
5. Social habits of cells may hold key to fighting diseases
6. UF scientists reveal how dietary restriction cleans cells
7. Human derived stem cells can repair rat hearts damaged by heart attack
8. Scientists identify embryonic stem cells by appearance alone
9. Cells united against cancer
10. Pittsburgh scientists identify human source of stem cells with potential to repair muscle
11. U of M begins nations first clinical trial using T-reg cells from cord blood in leukemia treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:4/13/2016)... CHICAGO , April 13, 2016  IMPOWER physicians ... are setting a new clinical standard in telehealth ... By leveraging the higi platform, IMPOWER patients can ... weight, pulse and body mass index, and, when they ... quick and convenient visit to a local retail location ...
(Date:3/31/2016)... 31, 2016  Genomics firm Nabsys has completed a ... Barrett Bready , M.D., who returned to the company ... technical leadership team, including Chief Technology Officer, John ... Steve Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
Breaking Biology Technology: