Navigation Links
MIT researchers develop a way to funnel solar energy

CAMBRIDGE, Mass. - Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.

"Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and leader of the research team.

Strano and his students describe their new carbon nanotube antenna, or "solar funnel," in the Sept. 12 online edition of the journal Nature Materials. Lead authors of the paper are postdoctoral associate Jae-Hee Han and graduate student Geraldine Paulus.

Their new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes.

Solar panels generate electricity by converting photons (packets of light energy) into an electric current. Strano's nanotube antenna boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.

The antenna consists of a fibrous rope about 10 micrometers (millionths of a meter) long and four micrometers thick, containing about 30 million carbon nanotubes. Strano's team built, for the first time, a fiber made of two layers of nanotubes with different electrical properties specifically, different bandgaps.

In any material, electrons can exist at different energy levels. When a photon strikes the surface, it excites an electron to a higher energy level, which is specific to the material. The interaction between the energized electron and the hole it leaves behind is called an exciton, and the difference in energy levels between the hole and the electron is known as the bandgap.

The inner layer of the antenna contains nanotubes with a small bandgap, and nanotubes in the outer layer have a higher bandgap. That's important because excitons like to flow from high to low energy. In this case, that means the excitons in the outer layer flow to the inner layer, where they can exist in a lower (but still excited) energy state.

Therefore, when light energy strikes the material, all of the excitons flow to the center of the fiber, where they are concentrated. Strano and his team have not yet built a photovoltaic device using the antenna, but they plan to. In such a device, the antenna would concentrate photons before the photovoltaic cell converts them to an electrical current. This could be done by constructing the antenna around a core of semiconducting material.

The interface between the semiconductor and the nanotubes would separate the electron from the hole, with electrons being collected at one electrode touching the inner semiconductor, and holes collected at an electrode touching the nanotubes. This system would then generate electric current. The efficiency of such a solar cell would depend on the materials used for the electrode, according to the researchers.

Strano's team is the first to construct nanotube fibers in which they can control the properties of different layers, an achievement made possible by recent advances in separating nanotubes with different properties.

While the cost of carbon nanotubes was once prohibitive, it has been coming down in recent years as chemical companies build up their manufacturing capacity. "At some point in the near future, carbon nanotubes will likely be sold for pennies per pound, as polymers are sold," says Strano. "With this cost, the addition to a solar cell might be negligible compared to the fabrication and raw material cost of the cell itself, just as coatings and polymer components are small parts of the cost of a photovoltaic cell."

Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon. The nanotube bundles described in the Nature Materials paper lose about 13 percent of the energy they absorb, but the team is working on new antennas that would lose only 1 percent.


Contact: Jessica Holmes
Massachusetts Institute of Technology

Related biology news :

1. Mount Sinai researchers analyze impact of chemical BPA in dental sealants used in children
2. Swine researchers seek answers to fibers low digestibility
3. Twins are intriguing research subjects for Notre Dame biometircs researchers
4. Researchers at UC Riverside find solution to cell death problem vexing stem cell research
5. Researchers at Childrens Hospital Los Angeles find diet-induced obesity accelerates leukemia
6. Researchers define role of CEP290 in maintaining ciliary function
7. Research about Brazilian marine biodiversity brings researchers from 5 countries together
8. Researchers identify how bone-marrow stem cells hold their breath in low-oxygen environments
9. Bochums researchers discover proton diode
10. U-M researchers receive largest single collection of psoriasis DNA samples
11. Researchers analyze the environmentalists paradox
Post Your Comments:
(Date:10/27/2015)... 27, 2015 In the present market scenario, ... for various industry verticals such as banking, healthcare, defense, ... growing demand for secure & simplified access control and ... as hacking of bank accounts, misuse of users, , ... as PC,s, laptops, and smartphones are expected to provide ...
(Date:10/26/2015)... , October 26, 2015 ... --> adds Biometrics Market ... 2021 as well as Emerging Biometrics ... reports to its collection of IT ... . --> ...
(Date:10/23/2015)... 23, 2015 Research and Markets ( ... Voice Recognition Biometrics Market 2015-2019" report to their ... The global voice recognition biometrics market to grow ... --> --> The report, ... based on an in-depth market analysis with inputs from ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... JACKSONVILLE, Florida , November 30, 2015 ... company specializing in the development of innovative peptide and ... & metastatic disease, today announced it will be presenting ... Event on December 1, 2015 at 2.30 PM PT. ... member and Strategic Advisor will be giving the presentation ...
(Date:11/30/2015)... , Nov. 30, 2015  Aytu BioScience, Inc. ... urological and related conditions, will present at two upcoming ..., an interactive real-time virtual conference, to be held ... Investor Conference, to be held December 2 nd ... Angeles and streamed live via webcast. ...
(Date:11/30/2015)... Florida and MAGDEBURG, Germany , ... of NeuroRehabilitation (ECNR) in Vienna, Austria ... 3rd European Congress of NeuroRehabilitation (ECNR) in ... --> NovaVision, a wholly owned subsidiary of Vycor ... European version of its Internet-delivered NovaVision Therapy Suite at the ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... tighter software integration with MarkLogic, the Enterprise NoSQL database platform provider, creating ... drive change. , Smartlogic’s Content Intelligence capabilities provide a robust set of ...
Breaking Biology Technology: