Navigation Links
MIT researchers develop a way to funnel solar energy
Date:9/12/2010

CAMBRIDGE, Mass. - Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.

"Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and leader of the research team.

Strano and his students describe their new carbon nanotube antenna, or "solar funnel," in the Sept. 12 online edition of the journal Nature Materials. Lead authors of the paper are postdoctoral associate Jae-Hee Han and graduate student Geraldine Paulus.

Their new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes.

Solar panels generate electricity by converting photons (packets of light energy) into an electric current. Strano's nanotube antenna boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.

The antenna consists of a fibrous rope about 10 micrometers (millionths of a meter) long and four micrometers thick, containing about 30 million carbon nanotubes. Strano's team built, for the first time, a fiber made of two layers of nanotubes with different electrical properties specifically, different bandgaps.

In any material, electrons can exist at different energy levels. When a photon strikes the surface, it excites an electron to a higher energy level, which is specific to the material. The interaction between the energized electron and the hole it leaves behind is called an exciton, and the difference in energy levels between the hole and the electron is known as the bandgap.

The inner layer of the antenna contains nanotubes with a small bandgap, and nanotubes in the outer layer have a higher bandgap. That's important because excitons like to flow from high to low energy. In this case, that means the excitons in the outer layer flow to the inner layer, where they can exist in a lower (but still excited) energy state.

Therefore, when light energy strikes the material, all of the excitons flow to the center of the fiber, where they are concentrated. Strano and his team have not yet built a photovoltaic device using the antenna, but they plan to. In such a device, the antenna would concentrate photons before the photovoltaic cell converts them to an electrical current. This could be done by constructing the antenna around a core of semiconducting material.

The interface between the semiconductor and the nanotubes would separate the electron from the hole, with electrons being collected at one electrode touching the inner semiconductor, and holes collected at an electrode touching the nanotubes. This system would then generate electric current. The efficiency of such a solar cell would depend on the materials used for the electrode, according to the researchers.

Strano's team is the first to construct nanotube fibers in which they can control the properties of different layers, an achievement made possible by recent advances in separating nanotubes with different properties.

While the cost of carbon nanotubes was once prohibitive, it has been coming down in recent years as chemical companies build up their manufacturing capacity. "At some point in the near future, carbon nanotubes will likely be sold for pennies per pound, as polymers are sold," says Strano. "With this cost, the addition to a solar cell might be negligible compared to the fabrication and raw material cost of the cell itself, just as coatings and polymer components are small parts of the cost of a photovoltaic cell."

Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon. The nanotube bundles described in the Nature Materials paper lose about 13 percent of the energy they absorb, but the team is working on new antennas that would lose only 1 percent.


'/>"/>

Contact: Jessica Holmes
holmesj@mit.edu
617-253-2702
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Mount Sinai researchers analyze impact of chemical BPA in dental sealants used in children
2. Swine researchers seek answers to fibers low digestibility
3. Twins are intriguing research subjects for Notre Dame biometircs researchers
4. Researchers at UC Riverside find solution to cell death problem vexing stem cell research
5. Researchers at Childrens Hospital Los Angeles find diet-induced obesity accelerates leukemia
6. Researchers define role of CEP290 in maintaining ciliary function
7. Research about Brazilian marine biodiversity brings researchers from 5 countries together
8. Researchers identify how bone-marrow stem cells hold their breath in low-oxygen environments
9. Bochums researchers discover proton diode
10. U-M researchers receive largest single collection of psoriasis DNA samples
11. Researchers analyze the environmentalists paradox
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access ... 15.1% over the next decade to reach approximately $1,580 million by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... , March 21, 2017 Vigilant Solutions ... serving law enforcement agencies, announced today the appointment of ... director of public safety business development. Mr. ... enforcement experience, including a focus on the aviation transportation ... most recent position, Mr. Sheridan served as the Aviation ...
(Date:3/9/2017)... Australia , March 9, 2017 /PRNewswire/ ... at the prestigious World Lung Imaging Workshop at the ... Fouras , was invited to deliver the latest data ... This globally recognised event brings together leaders at the ... latest developments in lung imaging. "The ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... ... The AMA is happy to announce that $48,000 in scholarships will be ... are created through funds donated by model aviation organizations and individuals, AMA members, and ... Scholarship Committee, which is made up of model aviation pilots and enthusiasts. The committee ...
(Date:4/20/2017)... Austin, TX; Ultrecht, Netherlands (PRWEB) , ... April ... ... Qafis Biometrics Technology today announced their strategic partnership to offer a ... Qafis’ digital identity authentication, a comprehensive suite of biometric products and the ground-breaking ...
(Date:4/20/2017)... (PRWEB) , ... April 20, 2017 , ... NetDimensions appoints ... Sales. , With over 20 years of experience in the learning technologies industry, Mastin ... sister company within Learning Technologies Group plc (LTG). At LEO, Mastin served as SVP ...
(Date:4/20/2017)... , ... April 20, 2017 , ... ... of a unique intellectual property (IP) sharing and commercialization model. , The Center ... inventions. A main component of this effort is bringing the IP to the ...
Breaking Biology Technology: