Navigation Links
MIT researchers develop a better way to grow stem cells
Date:8/22/2010

CAMBRIDGE, Mass. -- Human pluripotent stem cells, which can become any other kind of body cell, hold great potential to treat a wide range of ailments, including Parkinson's disease, multiple sclerosis and spinal cord injuries. However, scientists who work with such cells have had trouble growing large enough quantities to perform experiments in particular, to be used in human studies. Furthermore, most materials now used to grow human stem cells include cells or proteins that come from mice embryos, which help stimulate stem-cell growth but would likely cause an immune reaction if injected into a human patient.

To overcome those issues, MIT chemical engineers, materials scientists and biologists have devised a synthetic surface that includes no foreign animal material and allows stem cells to stay alive and continue reproducing themselves for at least three months. It's also the first synthetic material that allows single cells to form colonies of identical cells, which is necessary to identify cells with desired traits and has been difficult to achieve with existing materials.

The research team, led by Professors Robert Langer, Rudolf Jaenisch and Daniel G. Anderson, describes the new material in the Aug. 22 issue of Nature Materials. First authors of the paper are postdoctoral associates Ying Mei and Krishanu Saha.

Human stem cells can come from two sources embryonic cells or body cells that have been reprogrammed to an immature state. That state, known as pluripotency, allows the cells to develop into any kind of specialized body cells.

It also allows the possibility of treating nearly any kind of disease that involves injuries to cells. Scientists could grow new neurons for patients with spinal cord injuries, for example, or new insulin-producing cells for people with type 1 diabetes.

To engineer such treatments, scientists would need to be able to grow stem cells in the lab for an extended period of time, manipulate their genes, and grow colonies of identical cells after they have been genetically modified. Current growth surfaces, consisting of a plastic dish coated with a layer of gelatin and then a layer of mouse cells or proteins, are notoriously inefficient, says Saha, who works in Jaenisch's lab at the Whitehead Institute for Biomedical Research.

"For therapeutics, you need millions and millions of cells," says Saha. "If we can make it easier for the cells to divide and grow, that will really help to get the number of cells you need to do all of the disease studies that people are excited about."

Previous studies had suggested that several chemical and physical properties of surfaces including roughness, stiffness and affinity for water might play a role in stem-cell growth. The researchers created about 500 polymers (long chains of repeating molecules) that varied in those traits, grew stem cells on them and analyzed each polymer's performance. After correlating surface characteristics with performance, they found that there was an optimal range of surface hydrophobicity (water-repelling behavior), but varying roughness and stiffness did not have much effect on cell growth.

They also adjusted the composition of the materials, including proteins embedded in the polymer. They found that the best polymers contained a high percentage of acrylates, a common ingredient in plastics, and were coated with a protein called vitronectin, which encourages cells to attach to surfaces.

Using their best-performing material, the researchers got stem cells (both embryonic and induced pluripotent) to continue growing and dividing for up to three months. They were also able to generate large quantities of cells in the millions.

The MIT researchers hope to refine their knowledge to help them build materials suited to other types of cells, says Anderson, from the MIT Department of Chemical Engineering, the Harvard-MIT Division of Health Sciences and Technology, and the David H. Koch Institute for Integrative Cancer Research. "We want to better understand the interactions between the cell, the surface and the proteins, and define more clearly what it takes to get the cells to grow," he says.


'/>"/>

Contact: Jennifer Hirsch
jfhirsch@mit.edu
617-253-1682
Massachusetts Institute of Technology
Source:Eurekalert  

Related biology news :

1. U of M researchers identify 2 FDA approved drugs that may fight HIV
2. Researchers advance understanding of enzyme that regulates DNA
3. Juelich researchers take a look inside molecules
4. Researchers: Cures to diseases may live in our guts
5. Researchers discover how the storehouses of plant cells are formed
6. Mount Sinai researchers discover new mechanism behind cellular energy conversion
7. ISU researchers discover cause of immune system avoidance of certain pathogens
8. Researchers develop MRSA-killing paint
9. Researchers discover genetic link between immune system, Parkinsons disease
10. Ben-Gurion U. researchers receive US-AID MERC grant for water project with the Palestinian authority
11. Illinois researchers use pyrosequencing to study canine intestinal bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
MIT researchers develop a better way to grow stem cells
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , ... June 27, 2016 , ... Parallel 6 ... trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module which ... with the physician and clinical trial team. , Using the CONSULT module, patients and ...
(Date:6/27/2016)... --  Ginkgo Bioworks , a leading organism design ... awarded as one of the World Economic Forum,s ... innovative companies. Ginkgo Bioworks is engineering biology to ... in the nutrition, health and consumer goods sectors. ... including Fortune 500 companies to design microbes for ...
(Date:6/24/2016)... NC (PRWEB) , ... June 24, 2016 , ... Researchers ... the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are ... to read it now. , Diagnostic biomarkers are signposts in the blood, lung ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
Breaking Biology Technology: