Navigation Links
MIT-led teams unravel heparin death mystery

CAMBRIDGE, Mass.--An international team of researchers led by MIT has explained how contaminated batches of the blood-thinner heparin were able to slip past traditional safety screens and kill dozens of patients recently in the United States and Germany.

The team, led by Professor Ram Sasisekharan of MIT, identified the chemical structure of the contaminant, known as oversulfated chondroitin sulfate (OSCS). The researchers present their findings and offer new approaches to detecting the contaminant in a report appearing today in the online edition of Nature Biotechnology.

Another team led by Sasisekharan has shown exactly how OSCS can kill-specifically by setting off an allergy-like reaction. The biological effects of the contaminant are outlined in a report also being published online today in the New England Journal of Medicine.

Sophisticated analytical techniques enabled complete characterization of the contaminant present in heparin. Further, this study also provides the scientific groundwork for critical improvements in screening practices that can now be applied to monitor heparin, thus ensuring patient safety, said Sasisekharan, senior author of the papers and the Underwood Prescott Professor of Biological Engineering and Health Sciences and Technology at MIT.

Heparin, a blood thinner often used during kidney dialysis or heart surgery, is normally produced from pig intestines. FDA officials say the contaminated heparin came from factories in China that manufacture the drug for Baxter International.

Baxter recalled its heparin in February after dozens of deaths were reported, dating back to November. The tainted heparin has been blamed for 81 U.S. deaths so far, and earlier this week, the FDA announced that contaminated batches were also found in 10 other countries.

The New England Journal of Medicine study offers the first potential link between the contaminant and the reported deaths. The researchers found that the contaminated heparin activates two inflammatory pathways, causing severe allergic reactions and low blood pressure.

These results provide a potential link between the presence of chemical contaminant in heparin and the clinical symptoms observed in affected patients. Our findings also suggest that a simple bioassay could help protect the global supply chain of heparin, by screening heparin lots for the presence of polysulfated contaminants that may have unintended pharmacological consequences, said Sasisekharan.

Heparin consists of a long, complex chain of repeating sugar molecules. The contaminant, which is derived from animal cartilage, has a structure very similar to that of heparin and thus cannot be identified with the tests normally used to inspect batches of heparin.

It is unclear whether the contaminant got into the heparin during the manufacturing process, or how and where contamination could have occurred during the process. More investigations are needed to address this issue.

Traditional heparin safety screens test only for contaminants such as protein, lipids or DNA, and thus would not detect the presence of sugar chains that do not belong. Sasisekharan's laboratory has played a key role in developing new technologies for analyzing complex sugars. Using the new technology, the research team was able to detect the presence of the faulty sugars.

In addition to being vital for public health, identifying the recent impurity in heparin was a chemical triumph, said Jeremy M. Berg, director of the National Institute of General Medical Science, which supported the work. The research team accomplished this difficult task by using a unique combination of scientific techniques that might in the future be used to detect other impurities in pharmaceutical materials.

More than 100 patients have experienced adverse reactions after receiving the tainted heparin. Symptoms include extremely low blood pressure, swelling of the skin and mucus membranes, shortness of breath, and abdominal pain.

The researchers found that the contaminant activates two inflammatory pathways: one that initiates blood clotting and dilation of the blood vessels, and one that produces anaphylactic toxins. The first leads to a dangerous decrease in blood pressure, the second a serious allergic reaction. In blinded laboratory tests, the contaminated heparin activated the biological pathways, while normal heparin did not.

Sasisekharan emphasized the remarkable willingness of dozens of scientists across the globe to work together to rapidly resolve what might otherwise have left people with serious uncertainties about drug safety.

The generosity and willingness of people to do whatever they could to help solve this problem was unlike anything I'd experienced before. It is extremely satisfying to see how teamwork has resulted in the application of rigorous, peer-reviewed science that helps to keep our medicines safe, he said.

Sasisekharan expressed his hope that such effective teamwork will extend to other dimensions of public health, in which rigorous team-based science leads not only toward safer drugs, but also toward safer foods and a safer environment.


Contact: Elizabeth Thomson
Massachusetts Institute of Technology

Related biology news :

1. Singulex Teams With Wyeth Pharmaceuticals to Translate Pre-Clinical Biomarker Research Into Clinical Study Design
2. Pew Institute teams with Chantecaille Cosmetics to protect global marine life
3. Unravelling new complexity in the genome
4. MIT unraveling secrets of red tide
5. Scientists unravel plants natural defenses
6. Rebuilding the evolutionary history of HIV-1 unravels a complex loop
7. Unravelling the Northwests Viking past
8. Scientists unravel the genetic coding of the pea
9. Honeybee researcher to unravel properties governing lifespan with support from Norway
10. Computation to unravel how genes are regulated and shed light on how cells become different
11. Bleeding, not inflammation, is major cause of early lung infection death
Post Your Comments:
(Date:11/18/2015)... 18, 2015  As new scientific discoveries deepen our ... other healthcare providers face challenges in better using that ... In addition, as more children continue to survive pediatric ... and old age. John M. Maris, M.D ... of Philadelphia (CHOP) . --> John ...
(Date:11/17/2015)... Paris , qui s,est tenu ... Paris , qui s,est tenu du 17 au ... l,innovation biométrique, a inventé le premier scanner couplé, qui ... même surface de balayage. Jusqu,ici, deux scanners étaient nécessaires, ... digitales. Désormais, un seul scanner est en mesure de ...
(Date:11/16/2015)... SAN JOSE, Calif. , Nov 16, 2015 ... leading developer of human interface solutions, today announced ... new Synaptics TouchView ™ touch controller and ... the architectural revolution of smartphones. These new TDDI ... and include TD4100 (HD resolution), TD4302 (WQHD resolution), ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... International ... and one of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. ... 2015, where ISPE hosted the largest number of attendees in more than a ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), led by ... known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , ... have embraced this type of racing and several new model aviation pilots have joined ...
(Date:11/24/2015)... FRANCISCO , Nov. 24, 2015  Twist ... announced that Emily Leproust, Ph.D., Twist Bioscience chief ... Jaffray Healthcare Conference on December 1, 2015 at ... Hotel in New York City. --> ... . Twist Bioscience is on Twitter. ...
(Date:11/24/2015)... Capricor Therapeutics, Inc. (NASDAQ: ... development and commercialization of first-in-class therapeutics, today announced that ... scheduled to present at the 2015 Piper Jaffray Healthcare ... at The Lotte New York Palace Hotel in ... . --> . ...
Breaking Biology Technology: