Navigation Links
MIT-led teams unravel heparin death mystery
Date:4/23/2008

CAMBRIDGE, Mass.--An international team of researchers led by MIT has explained how contaminated batches of the blood-thinner heparin were able to slip past traditional safety screens and kill dozens of patients recently in the United States and Germany.

The team, led by Professor Ram Sasisekharan of MIT, identified the chemical structure of the contaminant, known as oversulfated chondroitin sulfate (OSCS). The researchers present their findings and offer new approaches to detecting the contaminant in a report appearing today in the online edition of Nature Biotechnology.

Another team led by Sasisekharan has shown exactly how OSCS can kill-specifically by setting off an allergy-like reaction. The biological effects of the contaminant are outlined in a report also being published online today in the New England Journal of Medicine.

Sophisticated analytical techniques enabled complete characterization of the contaminant present in heparin. Further, this study also provides the scientific groundwork for critical improvements in screening practices that can now be applied to monitor heparin, thus ensuring patient safety, said Sasisekharan, senior author of the papers and the Underwood Prescott Professor of Biological Engineering and Health Sciences and Technology at MIT.

Heparin, a blood thinner often used during kidney dialysis or heart surgery, is normally produced from pig intestines. FDA officials say the contaminated heparin came from factories in China that manufacture the drug for Baxter International.

Baxter recalled its heparin in February after dozens of deaths were reported, dating back to November. The tainted heparin has been blamed for 81 U.S. deaths so far, and earlier this week, the FDA announced that contaminated batches were also found in 10 other countries.

The New England Journal of Medicine study offers the first potential link between the contaminant and the reported deaths. The researchers found that the contaminated heparin activates two inflammatory pathways, causing severe allergic reactions and low blood pressure.

These results provide a potential link between the presence of chemical contaminant in heparin and the clinical symptoms observed in affected patients. Our findings also suggest that a simple bioassay could help protect the global supply chain of heparin, by screening heparin lots for the presence of polysulfated contaminants that may have unintended pharmacological consequences, said Sasisekharan.

Heparin consists of a long, complex chain of repeating sugar molecules. The contaminant, which is derived from animal cartilage, has a structure very similar to that of heparin and thus cannot be identified with the tests normally used to inspect batches of heparin.

It is unclear whether the contaminant got into the heparin during the manufacturing process, or how and where contamination could have occurred during the process. More investigations are needed to address this issue.

Traditional heparin safety screens test only for contaminants such as protein, lipids or DNA, and thus would not detect the presence of sugar chains that do not belong. Sasisekharan's laboratory has played a key role in developing new technologies for analyzing complex sugars. Using the new technology, the research team was able to detect the presence of the faulty sugars.

In addition to being vital for public health, identifying the recent impurity in heparin was a chemical triumph, said Jeremy M. Berg, director of the National Institute of General Medical Science, which supported the work. The research team accomplished this difficult task by using a unique combination of scientific techniques that might in the future be used to detect other impurities in pharmaceutical materials.

More than 100 patients have experienced adverse reactions after receiving the tainted heparin. Symptoms include extremely low blood pressure, swelling of the skin and mucus membranes, shortness of breath, and abdominal pain.

The researchers found that the contaminant activates two inflammatory pathways: one that initiates blood clotting and dilation of the blood vessels, and one that produces anaphylactic toxins. The first leads to a dangerous decrease in blood pressure, the second a serious allergic reaction. In blinded laboratory tests, the contaminated heparin activated the biological pathways, while normal heparin did not.

Sasisekharan emphasized the remarkable willingness of dozens of scientists across the globe to work together to rapidly resolve what might otherwise have left people with serious uncertainties about drug safety.

The generosity and willingness of people to do whatever they could to help solve this problem was unlike anything I'd experienced before. It is extremely satisfying to see how teamwork has resulted in the application of rigorous, peer-reviewed science that helps to keep our medicines safe, he said.

Sasisekharan expressed his hope that such effective teamwork will extend to other dimensions of public health, in which rigorous team-based science leads not only toward safer drugs, but also toward safer foods and a safer environment.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Singulex Teams With Wyeth Pharmaceuticals to Translate Pre-Clinical Biomarker Research Into Clinical Study Design
2. Pew Institute teams with Chantecaille Cosmetics to protect global marine life
3. Unravelling new complexity in the genome
4. MIT unraveling secrets of red tide
5. Scientists unravel plants natural defenses
6. Rebuilding the evolutionary history of HIV-1 unravels a complex loop
7. Unravelling the Northwests Viking past
8. Scientists unravel the genetic coding of the pea
9. Honeybee researcher to unravel properties governing lifespan with support from Norway
10. Computation to unravel how genes are regulated and shed light on how cells become different
11. Bleeding, not inflammation, is major cause of early lung infection death
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... Lithuania , Nov. 29, 2016 /PRNewswire/ ... biometric identification and object recognition technologies, today ... (SDK) for fingerprint recognition solutions that run ... a fingerprint template using less than 128KB ... in compact devices that have limited on-board ...
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology ... object recognition technologies, today announced that the MegaMatcher ... cards was submitted for the NIST Minutiae ... passed all the mandatory steps of the evaluation ... is a continuing test of fingerprint templates used ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... ... December 05, 2016 , ... In anticipation ... and lumbar disc production, company President, Jake Lubinski will be traveling to Germany ... AxioMed disc in Cologne and Karlsruhe to discuss the benefits of a viscoelastic ...
(Date:12/5/2016)... Mich. , Dec. 5, 2016 NxGen MDx announced today ... bringing the test in house, we,ve been able to improve customer service ... for patients," says Alan Mack , CEO of NxGen MDx. ... , , ... test volume has led to more job opportunities at the Grand Rapid ...
(Date:12/4/2016)... USA (PRWEB) , ... December 02, 2016 , ... ... of innovative U.S.-owned and -operated small businesses in federally funded research and development ... the international society for optics and photonics . , As part of the ...
(Date:12/2/2016)... (PRWEB) , ... December 02, 2016 , ... ... MA to soon resume cervical and lumbar disc production, company President, Jake Lubinski ... surgeons who are implanting the AxioMed disc in Bern, Lucerne, and Zurich to ...
Breaking Biology Technology: