Navigation Links
MIT gas sensor is tiny, quick
Date:1/11/2008

CAMBRIDGE, Mass.--Engineers at MIT are developing a tiny sensor that could be used to detect minute quantities of hazardous gases, including toxic industrial chemicals and chemical warfare agents, much more quickly than current devices.

The researchers have taken the common techniques of gas chromatography and mass spectrometry and shrunk them to fit in a device the size of a computer mouse. Eventually, the team, led by MIT Professor Akintunde Ibitayo Akinwande, plans to build a detector about the size of a matchbox.

"Everything we're doing has been done on a macro scale. We are just scaling it down," said Akinwande, a professor of electrical engineering and computer science and member of MIT's Microsystems Technology Laboratories (MTL).

Akinwande and MIT research scientist Luis Velasquez-Garcia plan to present their work at the Micro Electro Mechanical Systems (MEMS) 2008 conference next week. In December, they presented at the International Electronic Devices Meeting.

Scaling down gas detectors makes them much easier to use in a real-world environment, where they could be dispersed in a building or outdoor area. Making the devices small also reduces the amount of power they consume and enhances their sensitivity to trace amounts of gases, Akinwande said.

He is leading an international team that includes scientists from the University of Cambridge, the University of Texas at Dallas, Clean Earth Technology and Raytheon, as well as MIT.

Their detector uses gas chromatography and mass spectrometry (GC-MS) to identify gas molecules by their telltale electronic signatures. Current versions of portable GC-MS machines, which take about 15 minutes to produce results, are around 40,000 cubic centimeters, about the size of a full paper grocery bag, and use 10,000 joules of energy.

The new, smaller version consumes about four joules and produces results in about four seconds.

The device, which the researchers plan to have completed within two years, could be used to help protect water supplies or for medical diagnostics, as well as detecting hazardous gases in the air.

The analyzer works by breaking gas molecules into ionized fragments, which can be detected by their specific charge (ratio of charge to molecular weight).

Gas molecules are broken apart either by stripping electrons off the molecules, or by bombarding them with electrons stripped from carbon nanotubes. The fragments are then sent through a long, narrow electric field. At the end of the field, the ions' charges are converted to voltage and measured by an electrometer, yielding the molecules' distinctive electronic signature.

Shrinking the device greatly reduces the energy needed to power it, in part because much of the energy is dedicated to creating a vacuum in the chamber where the electric field is located.

Another advantage of the small size is that smaller systems can be precisely built using microfabrication. Also, batch-fabrication will allow the detectors to be produced inexpensively.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Louisiana Tech researchers investigate tracking, sensors to assist Air Force
2. UCLA/VA partners with ASU to advance biosensor technology for urinary tract infections
3. New microsensor measures volatile organic compounds in water and air on-site
4. New field-deployable biosensor detects avian influenza virus in minutes instead of days
5. bioMETRX, Inc. Announces Integration of AuthenTec Fingerprint Sensor in smartTOUCH(TM) Product Line
6. T. rex quicker than Becks, say scientists
7. International team shows mercury concentrations in fish respond quickly to increased deposition
8. New study shows fish respond quickly to changes in mercury deposition
9. New study shows fish respond quickly to changes in mercury deposition
10. International team shows mercury concentrations in fish respond quickly to increased deposition
11. Twinkle after-effect can help retinal patients detect vision loss quickly and cheaply
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2016)... BEACH GARDENS, Fla. , March 9, 2016 ... identity management authentication and enrollment solutions, today announced ... DigitalPersona ® Altus multi-factor authentication ... IT and InfoSec managers to step-up security where ... Washington, DC . ...
(Date:3/3/2016)... , March 3, 2016  2016FLEX, organized ... this week highlighting advancements in flexible, hybrid and ... record setting attendance - have gathered for short ... fast-growing field of electronics. The Flex Conference celebrates ... point for companies, R&D organizations, and universities contributing ...
(Date:3/2/2016)... , March 2, 2016 ... addition of the "Global Biometrics as ... their offering. --> http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ... "Global Biometrics as a Service Market ... --> Research and Markets ( ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... ... April 28, 2016 , ... Morris Midwest ( http://www.morrismidwest.com ... regional manufacturers at its Maple Grove, Minnesota technical center, May 11-12. The ... Trumpf. Almost 20 leading suppliers of tooling, accessories, software and other related ...
(Date:4/27/2016)... NY (PRWEB) , ... April 27, 2016 , ... ... it. Touch screen mobile devices with fingerprint recognition for secure access, voice ... are only a few ways consumers are interacting with biometrics technology today. ...
(Date:4/27/2016)... VIRGINIA (PRWEB) , ... April 27, 2016 , ... ... today that Jon Clark has joined the company as an Expert Consultant. ... responsible for industry collaborations and managing the development of small molecule monographs based ...
(Date:4/27/2016)... ... ... Global Stem Cells Group and the University of Santiago Biotechnology Lab ... initiatives for potential stem cell protocol management for 2016 – 2020. , In ... to establish a working agenda and foster initiatives to promote stem cell research and ...
Breaking Biology Technology: