Navigation Links
MIT develops new way to fuse cells
Date:1/4/2009

CAMBRIDGE, Mass. -- MIT engineers have developed a new, highly efficient way to pair up cells so they can be fused together into a hybrid cell.

The new technique should make it much easier for scientists to study what happens when two cells are combined. For example, fusing an adult cell and an embryonic stem cell allows researchers to study the genetic reprogramming that occurs in such hybrids.

The researchers, led by a collaboration between Joel Voldman, associate professor of electrical engineering and computer science, and Rudolf Jaenisch, professor of biology and a member of the Whitehead Institute, report the new technique in the Jan. 4 online edition of Nature Methods.

The work was spearheaded by two postdoctoral associates, Alison Skelley, who worked in Voldman's lab, and Oktay Kirak, who works with Jaenisch. Skelley and Kirak are lead authors of the Nature Methods paper. Heikyung Suh, a technical associate in the Whitehead Institute, is also an author of the paper.

The team's simple but ingenious sorting method increases the rate of successful cell fusion from around 10 percent to about 50 percent, and allows thousands of cell pairings at once.

Though cell fusion techniques have been around for a long time, there are many technical limitations, said Voldman.

Getting the right cells to pair up before fusing them is one major obstacle. If scientists are working with a mixture of two cell types, for example A and B, they end up with many AA and BB pairings, as well as the desired AB match.

Researchers had previously trapped cells in tiny cups as they flow across a chip. Each cup can hold only two cells, but there is no way to control whether the cups capture an A and a B, two As or two Bs.

In contrast, the cell-trapping cups on Voldman and Jaenisch's new sorting device are arranged strategically to capture and pair up cells of different types.

First, type A cells are flowed across the chip in one direction and caught in traps that are large enough to hold only one cell. Once the cells are trapped, liquid is flowed across the chip in the opposite direction, pushing the cells out of the small cups and into larger cups across from the small ones.

Once one A cell is in each large cup, type B cells are flowed into the large cups. Each cup can only hold two cells, so each ends up with one A and one B. After the cells are paired in the traps, they can be joined together by an electric pulse that fuses the cell membranes.

In addition to helping with studies of stem cell reprogramming, this technique could be used to study interactions between any types of cells. "It's a very general type of device," said Voldman.


'/>"/>

Contact: Jen Hirsch
jfhirsch@mit.edu
617-253-1682
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. How schizophrenia develops: Major clues discovered
2. MIT develops tractor beam for cells, more
3. Team of scientists develops non-invasive method to track nerve-cell development in live human brain
4. MBL develops infrastructure and portal for Encyclopedia of Life
5. U of I researcher develops power-packed soy breakfast cereal
6. Scientists discover how TB develops invincibility against only available treatment
7. Europe develops new technologies to boost health of livestock
8. Queens develops safe green decontamination method
9. Carnegie Mellon develops computer model to study cell membrane dynamics
10. Taking a cue from breath fresheners, researcher develops new method for taste testing
11. Engineer develops detergent to promote peripheral nerve healing
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/14/2016)... Florida , March 14, 2016 ... the growing mobile commerce market, announces the airing of a ... channels starting the week of March 21 st .  The ... CNBC, including its popular Squawk on the Street show. ... focused on the growing mobile commerce market, announces the airing ...
(Date:3/11/2016)... March 11, 2016 --> ... research report "Image Recognition Market by Technology (Pattern Recognition), ... Advertising), by Deployment Type (On-Premises and Cloud), by Industry ... published by MarketsandMarkets, the global market is expected to ... 29.98 Billion by 2020, at a CAGR of 19.1%. ...
(Date:3/9/2016)... 2016 This BCC Research report provides an ... RNA Sequencing (RNA Seq) market for the years 2015, ... and reagents, data analysis, and services. Use ... RNA-Sequencing market such as RNA-Sequencing tools and reagents, RNA-Sequencing ... affecting each segment and forecast their market growth, future ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... April 27, 2016 , ... The Pittcon Organizing Committee is ... Chuck has been a volunteer member of Committee since 1987. Since then, he has ... directors and treasurer and was chairman for both the program and exposition committees. In ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... has joined the company as an Expert Consultant. Mr. Clark was formerly ... and managing the development of small molecule monographs based on analytical methods. ...
(Date:4/27/2016)... 27, 2016 MedDay, a biotechnology company ... the appointment of Catherine Moukheibir as Chairman of its Board ... Jean Jacques Garaud , who contributed to the rapid ... immediately. Catherine started her career in strategy consulting ... London .  She held C-Suite level roles ...
(Date:4/26/2016)... ... April 26, 2016 , ... ... systems, announces the latest technology innovation for its Volume Pattern Generator (VPG) line ... for production of advanced photomasks as well as a solution for mid volume ...
Breaking Biology Technology: