Navigation Links
MIT IDs proteins key to brain function
Date:11/19/2007

CAMBRIDGE, MA MIT researchers have identified a family of proteins key to the formation of the communication networks critical for normal brain function. Their research could lead to new treatments for brain injury and disease.

The team, led by MIT biology professor Frank Gertler, found that a certain family of proteins is necessary to direct the formation of axons and dendrites, the cellular extensions that facilitate communication between neurons.

The work focuses on cellular outgrowths called neurites, which are the precursors to axons and dendrites. Understanding how neurites form could eventually lead to therapies involving stimulation of neurite growth, said Gertler.

You could use these insights to help repair injuries to the top of the spinal column, or treat brain injuries or neurodegenerative disorders, he said.

The researchers developed the first model that allows for study of the effects of this protein family, known as the Ena/VASP proteins. The team reported aspects of their work in the Nov. 11 issue of Neuron and the Nov. 18 online edition of Nature Cell Biology.

The majority of neurons in the cerebral cortex have a single axona long, thin extension that relays information to other cellsand many shorter dendrites, which receive messages from other cells. The interconnection of these axons and dendrites is essential to create a functional neural circuit.

In their study, the researchers found that mice without the three Ena/VASP proteins did produce brain cells, but those neurons were unable to extend any axons or dendrites.

It was already known that Ena/VASP proteins are involved in axon navigation, but the researchers were surprised to find that they are also critical for neurite formation, Gertler said.

Ena/VASP proteins are located in the tips of a neurites filopodia, which are short extensions that receive environmental signals and translate them into instructions for the cell. Those instructions tell the cell whether to continue extending the filopodia by lengthening actin protein filaments, or to stop growth.

Without the Ena/VASP proteins, neurites cannot form, and no connections are made between neurons.

The researchers believe that Ena/VASP proteins control the growth of filopodia by regulating actin filaments interactions with microtubules in the cell (which form part of the cell skeleton). One theory is that the microtubules might be delivering materials or sending signals to the filopodia through the actin filaments, Gertler said.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. NIH awards researcher $1.5 million new innovator grant for fruit-fly studies of prion proteins
3. Depression, aging, and proteins made by a virus may all play role in heart disease
4. New approach builds better proteins inside a computer
5. Legionnaires bacterial proteins work together to survive
6. Proteins pack tighter in crowded native state
7. Invasion of the brain tumors
8. HIV is a double hit to the brain
9. AIDS interferes with stem cells in the brain
10. 60 second test could help early diagnosis of common brain diseases
11. U of MN researchers discover noninvasive diagnostic tool for brain diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology , ... recognition technologies, today announced that the MegaMatcher On ... was submitted for the NIST Minutiae Interoperability ... all the mandatory steps of the evaluation protocol. ... a continuing test of fingerprint templates used to ...
(Date:11/16/2016)... , Nov. 16, 2016 Sensory Inc ... and security for consumer electronics, and VeriTran ... and retail industry, today announced a global partnership ... way to authenticate users of mobile banking and ... TrulySecure™ software which requires no specialized biometric ...
(Date:11/14/2016)... , Nov. 14, 2016  Based ... identification market, Frost & Sullivan recognizes FST ... Sullivan Award for Visionary Innovation Leadership. FST ... the biometric identification market by pioneering In ... solution for instant, seamless, and non-invasive verification. ...
Breaking Biology News(10 mins):
(Date:12/8/2016)...  Renova™ Therapeutics, a biotechnology company developing gene ... 2 diabetes, announced that it has obtained a ... vector developed in the laboratory of Professor ... The company plans to use this vector in ... "Early research has shown promise ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, a ... device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's first ... a small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket for ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., ... development of the next generation neuro-thrombectomy system for the ... of Tudor G. Jovin, MD to join its Scientific ... as a strategic network of scientific and clinical experts ... development of the ANCD BRAIN ® to its ...
(Date:12/8/2016)... ... December 08, 2016 , ... Microbial genomics ... Awards. uBiome is one of just six company finalists in the Health & ... to uBiome, companies nominated as finalists in this year’s awards include Google, SpaceX, ...
Breaking Biology Technology: