Navigation Links
MIT: Removable 'cloak' for nanoparticles helps them target tumors
Date:5/3/2011

CAMBRIDGE, Mass. -- MIT chemical engineers have designed a new type of drug-delivery nanoparticle that exploits a trait shared by almost all tumors: They are more acidic than healthy tissues.

Such particles could target nearly any type of tumor, and can be designed to carry virtually any type of drug, says Paula Hammond, a member of the David H. Koch Institute for Integrative Cancer Research at MIT and senior author of a paper describing the particles in the journal ACS Nano.

Like most other drug-delivering nanoparticles, the new MIT particles are cloaked in a polymer layer that protects them from being degraded by the bloodstream. However, the MIT team, including lead author and postdoctoral associate Zhiyong Poon, designed this outer layer to fall off after entering the slightly more acidic environment near a tumor. That reveals another layer that is able to penetrate individual tumor cells.

In the ACS Nano paper, which went online April 23, the researchers reported that, in mice, their particles can survive in the bloodstream for up to 24 hours, accumulate at tumor sites and enter tumor cells.

The new MIT approach differs from that taken by most nanoparticle designers. Typically, researchers try to target their particles to a tumor by decorating them with molecules that bind specifically to proteins found on the surface of cancer cells. The problem with that strategy is that it's difficult to find the right target a molecule found on all of the cancer cells in a particular tumor, but not on healthy cells. Also, a target that works for one type of cancer might not work for another.

Hammond and her colleagues decided to take advantage of tumor acidity, which is a byproduct of its revved-up metabolism. Tumor cells grow and divide much more rapidly than normal cells, and that metabolic activity uses up a lot of oxygen, which increases acidity. As the tumor grows, the tissue becomes more and more acidic.

To build their targeted particles, the researchers used a technique called "layer-by-layer assembly." This means each layer can be tailored to perform a specific function.

When the outer layer (made of polyethylene glycol, or PEG) breaks down in the tumor's acidic environment, a positively charged middle layer is revealed. That positive charge helps to overcome another obstacle to nanoparticle drug delivery: Once the particles reach a tumor, it's difficult to get them to enter the cells. Particles with a positive charge can penetrate the negatively charged cell membrane, but such particles can't be injected into the body without a "cloak" of some kind because they would also destroy healthy tissues.

The nanoparticles' innermost layer can be a polymer that carries a cancer drug, or a quantum dot that could be used for imaging, or virtually anything else that the designer might want to deliver, says Hammond, who is the Bayer Professor of Chemical Engineering at MIT.

Other researchers have tried to design nanoparticles that take advantage of tumors' acidity, but Hammond's particles are the first that have been successfully tested in living animals.

The researchers are planning to further develop these particles and test their ability to deliver drugs in animals. Hammond says she expects it could take five to 10 years of development before human clinical trials could begin.

Hammond's team is also working on nanoparticles that can carry multiple payloads. For example, the outer PEG layer might carry a drug or a gene that would "prime" the tumor cells to be susceptible to another drug carried in the particle's core.


'/>"/>

Contact: Caroline McCall
cmccall5@mit.edu
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. All wrapped up: K-State researchers graphene cloak protects bacteria, leading to better images
2. Moths cloaked in color
3. Invisibility cloak could protect against earthquakes
4. Common nanoparticles found to be highly toxic to Arctic ecosystem
5. Nanoparticles offer hope for common skin allergy
6. Rice scientist recognized for stellar work on nanoparticles, cell membranes
7. Growth-factor-containing nanoparticles accelerate healing of chronic wounds
8. With chemical modification, stable RNA nanoparticles go 3-D
9. Cinnamon can replace harmful chemicals used to create nanoparticles
10. Drugs encased in nanoparticles travel to tumors on the surface of immune-system cells
11. Probing the nanoparticle: Predicting how nanoparticles will react in the human body
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
(Date:3/16/2017)... -- CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made in ... ... Used combined in one project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog ... Used combined in one project, multi-biometric solutions provide ... ...
Breaking Biology News(10 mins):
(Date:4/25/2017)... ... April 25, 2017 , ... L3 Clinical ... announce the company is now a certified iMedNet eClinical and Electronic Data Capture ... the company’s clinical research team to build, customize and manage clinical trial data ...
(Date:4/25/2017)... (PRWEB) , ... April 25, 2017 , ... ... Services and Metrology Partners.     , Covalent’s Analytical Services unit provides high-quality ... can be measured within 24 hours of receipt. There are no price premiums, ...
(Date:4/24/2017)... 2017  Dante Labs announced today the offer of whole ... $900). While American individuals have been able to access WGS ... access WGS below EUR 1,000. The sequencing includes ... information to make informed decisions about disease monitoring, prevention, nutrition, ... ...
(Date:4/21/2017)... ... April 21, 2017 , ... The University of Connecticut, ... funding to three startups through the UConn Innovation Fund. The $1.5 million UConn ... affiliated with UConn. , The UConn Innovation Fund provides investments of up to ...
Breaking Biology Technology: