Navigation Links
MIT: New tissue scaffold regrows cartilage and bone
Date:5/11/2009

CAMBRIDGE, Mass.--MIT engineers and colleagues have built a new tissue scaffold that can stimulate bone and cartilage growth when transplanted into the knees and other joints.

The scaffold could offer a potential new treatment for sports injuries and other cartilage damage, such as arthritis, says Lorna Gibson, the Matoula S. Salapatas Professor of Materials Science and Engineering and co-leader of the research team with Professor William Bonfield of Cambridge University.

"If someone had a damaged region in the cartilage, you could remove the cartilage and the bone below it and put our scaffold in the hole," said Gibson. The researchers describe their scaffold in a recent series of articles in the Journal of Biomedical Materials Research.

The technology has been licensed to Orthomimetics, a British company launched by one of Gibson's collaborators, Andrew Lynn of Cambridge University. The company recently started clinical trials in Europe.

The scaffold has two layers, one that mimics bone and one that mimics cartilage. When implanted into a joint, the scaffold can stimulate mesenchymal stem cells in the bone marrow to produce new bone and cartilage. The technology is currently limited to small defects, using scaffolds roughly 8 mm in diameter.

The researchers demonstrated the scaffold's effectiveness in a 16-week study involving goats. In that study, the scaffold successfully stimulated bone and cartilage growth after being implanted in the goats' knees.

The project, a collaboration enabled by the Cambridge-MIT Institute, began when the team decided to build a scaffold for bone growth. They started with an existing method to produce a skin scaffold, made of collagen (from bovine tendon) and glycosaminoglycan, a long polysaccharide chain. To mimic the structure of bone, they developed a technique to mineralize the collagen scaffold by adding sources of calcium and phosphate.

Once that was done, the team decided to try to create a two-layer scaffold to regenerate both bone and cartilage (known as an osteochondral scaffold). Their method produces two layers with a gradual transition between the bone and cartilage layers.

"We tried to design it so it's similar to the transition in the body. That's one of the unique things about it," said Gibson.

There are currently a few different ways to treat cartilage injuries, including stimulating the bone marrow to release stem cells by drilling a hole through the cartilage into the bone; transplanting cartilage and the underlying bone from another, less highly loaded part of the joint; or removing cartilage cells from the body, stimulating them to grow in the lab and re-implanting them.

The new scaffold could offer a more effective, less expensive, easier and less painful substitute for those therapies, said Gibson.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. NIST issues first reference material for tissue engineering
2. Lithium may help radiation target cancer, spare healthy tissue
3. Gene therapy appears safe to regenerate gum tissue
4. Model tissue system reveals cellular communication via amino acids
5. Therapeutic hypothermia is promising strategy to minimize tissue damage
6. Stem cells replace stroke-damaged tissue in rats
7. A new way to assemble cells into 3-D microtissues
8. High-fat diets inflame fat tissue around blood vessels, contribute to heart disease
9. Advancement in tissue engineering promotes oral wound healing
10. Building better bones and tissue in the lab
11. Columbia University scientist devises new way to more rapidly generate bone tissue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)...  Hunova, the first robotic gym for the rehabilitation and functional motor ... Genoa, Italy . The first 30 robots will be ... USA . The technology was developed and patented at the ... spin-off Movendo Technology thanks to a 10 million euro investment from entrepreneur ... ...
(Date:4/19/2017)... 2017 The global military biometrics ... marked by the presence of several large global players. ... five major players - 3M Cogent, NEC Corporation, M2SYS ... nearly 61% of the global military biometric market in ... global military biometrics market boast global presence, which has ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... ... ... Algenist continues to disrupt the skincare industry with today’s debut of GENIUS Liquid ... the key structural element skin needs to maintain its youthful appearance and Algenist is ... First to market with proprietary collagen water active , Active ...
(Date:8/10/2017)... ... August 09, 2017 , ... Teachers from three Philadelphia middle ... 14th through the 16th, the University City Science Center will kick off the ... provides Philadelphia-based middle school educators an opportunity for professional development related to STEM ...
(Date:8/10/2017)... ... August 09, 2017 , ... Okyanos Center for Regenerative Medicine has announced its ... Hotel in Freeport, Grand Bahama on September 27, 2017. This daytime event is free ... from the Ministry of Health’s National Stem Cell Ethics Committee (NSCEC) and regulations laid ...
(Date:8/10/2017)... USA, and CARDIFF, UK (PRWEB) , ... August ... ... and photonics, has announced an agreement establishing Kinokuniya Company Ltd. as its exclusive ... SPIE as the exclusive sales representative for the SPIE Digital Library in Japan. ...
Breaking Biology Technology: