Navigation Links
MIT: New blood-testing device can quickly spot cancer cells, HIV
Date:3/29/2011

CAMBRIDGE, Mass. -- A Harvard bioengineer and an MIT aeronautical engineer have created a new device that can detect single cancer cells in a blood sample, potentially allowing doctors to quickly determine whether cancer has spread from its original site.

The microfluidic device, described in the March 17 online edition of the journal Small, is about the size of a dime, and could also detect viruses such as HIV. It could eventually be developed into low-cost tests for doctors to use in developing countries where expensive diagnostic equipment is hard to come by, says Mehmet Toner, professor of biomedical engineering at Harvard Medical School and a member of the Harvard-MIT Division of Health Sciences and Technology.

Toner built an earlier version of the device four years ago. In that original version, blood taken from a patient flows past tens of thousands of tiny silicon posts coated with antibodies that stick to tumor cells. Any cancer cells that touch the posts become trapped. However, some cells might never encounter the posts at all.

Toner thought if the posts were porous instead of solid, cells could flow right through them, making it more likely they would stick. To achieve that, he enlisted the help of Brian Wardle, an MIT associate professor of aeronautics and astronautics, and an expert in designing nano-engineered advanced composite materials to make stronger aircraft parts.

Out of that collaboration came the new microfluidic device, studded with carbon nanotubes, that collects cancer cells eight times better than the original version.

Circulating tumor cells (cancer cells that have broken free from the original tumor) are normally very hard to detect, because there are so few of them usually only several cells per 1-milliliter sample of blood, which can contain tens of billions of normal blood cells. However, detecting these breakaway cells is an important way to determine whether a cancer has metastasized.

"Of all deaths from cancer, 90 percent are not the result of cancer at the primary site. They're from tumors that spread from the original site," Wardle says.

When designing advanced materials, Wardle often uses carbon nanotubes tiny, hollow cylinders whose walls are lattices of carbon atoms. Assemblies of the tubes are highly porous: A forest of carbon nanotubes, which contains 10 billion to 100 billion carbon nanotubes per square centimeter, is less than 1 percent carbon and 99 percent air. This leaves plenty of space for fluid to flow through.

The MIT/Harvard team placed various geometries of carbon nanotube forest into the microfluidic device. As in the original device, the surface of each tube can be decorated with antibodies specific to cancer cells. However, because the fluid can go through the forest geometries as well as around them, there is much greater opportunity for the target cells or particles to get caught.

The researchers can customize the device by attaching different antibodies to the nanotubes' surfaces. Changing the spacing between the nanotube geometric features also allows them to capture different sized objects from tumor cells, about a micron in diameter, down to viruses, which are only 40 nm.

The researchers are now beginning to work on tailoring the device for HIV diagnosis. Toner's original cancer-cell-detecting device is now being tested in several hospitals and may be commercially available within the next few years.


'/>"/>

Contact: Caroline McCall
cmccall5@mit.edu
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Kount Receives Patent for Device Fingerprinting
2. Nanodiamond drug device could transform cancer treatment
3. Caltech engineers build firast-ever multi-input plug-and-play synthetic RNA device
4. Linking Proteins, Wires, Dots, and Molecules into Useful Devices
5. NC State finds new nanomaterial could be breakthrough for implantable medical devices
6. Futronic Launches FS22 Fingerprint Access Control Device
7. BIO-key(R) Granted Patent for Trusted Biometric Device Security Solution
8. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
9. Device protects transplanted pancreatic cells from the immune system
10. Chemical found in medical devices impairs heart function
11. MIT’s implantable device offers continuous cancer monitoring
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... Feb. 7, 2017 Report Highlights ... 2021 from $8.3 billion in 2016 at a compound ... 2021. Report Includes - An overview of the ... trends, with data from 2015 and 2016, and projections ... Segmentation of the market on the basis of product ...
(Date:2/6/2017)... , Feb. 6, 2017 According ... security are driving border authorities to continue to ... reports there are 2143 Automated Border Control (ABC) ... currently deployed at more than 163 ports of ... 2013 to 2016 achieving a combined CAGR of ...
(Date:2/2/2017)... , Feb. 2, 2017  EyeLock LLC, a market ... new white paper " What You Should Know About ... of ensuring user authenticity is a growing concern. In ... of users. However, traditional authentication schemes such as username/password ... Biometric authentication offers an elegant solution to the ...
Breaking Biology News(10 mins):
(Date:2/24/2017)... , Feb. 24, 2017  OncoSec Medical Incorporated ("OncoSec") ... will host a Key Opinion Leader event to highlight ... oral and poster presentation at the upcoming 2017 ASCO-SITC ... KOL event will be held in-person and via live ... / 9:00 AM PST at the Lotte New York ...
(Date:2/23/2017)... Calif. , Feb. 23, 2017  MIODx ... license for two key immunotherapy technologies from the ... technology provides a method to monitor a patient ... as PD-L1 and CTLA-4.  The second license extends ... a patient is likely to have an immune-related ...
(Date:2/23/2017)... (PRWEB) , ... February 23, ... ... Inc., announced today that in a published evaluation of multiple immunoassay-based threat ... U.S. Department of Energy Laboratory, PathSensors’ CANARY® biosensor threat detection technology was ...
(Date:2/23/2017)... 23, 2017 Aviva Systems Biology Corporation ... acquisition of GenWay Biotech Incorporated, a protein solutions ... product offering for both the research and diagnostic ... and enhance capabilities for both entities. GenWay,s 18 years ... will nicely complement ASB,s objective to become a ...
Breaking Biology Technology: